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Abstract. In this paper the problem of finding the set of all real solutions to a system of # non-linear
equations contained in a given n-dimensional box (the global solution problem) is considered. A new
method for solving the giobal solution problem is suggested. It is based on a transformation of the
original system into a larger system of separable form. The global solution of the latter system Is then
found in a most efficient manner by a new interval method which exploits the separabily property.
Numericat examples illustrating the efficiency of the method suggested are provided.

1. Introduction

Let v : D <« R" — R" be a continuously differentiable function and let X” =
(X}....X})y ¢ D be a given interval vector (a box). The following global solution
problem (GS problem) has been considered in a number of publications.

THE GS PROBLEM. Given y and X, find the set Sy, X% 2 (DX of all

real solutions (zeros) to the system of equations

wix) =0 (1.1a)
which are contained in X'V, i.e. when

xe X (1.1b)

Presently, interval methods (methods based on interval analysis technigues ) seem
to be the only methods which are capable of infallibly solving the GS problem (see
{17] and the references therein cited). Indeed, on termination they provide a set of
small boxes X', s = 1,.., P with P > p which contains the set x*), s = [, .. p. If
no clustering is observed, P = p and each X** provides guaranieed bounds on the
solution x'” even in the presence of roundoff errors.

However, all interval methods known to date suffer from a sertous drawhack
which severely limits their applicability, namely their numerical complexity grows
too rapidly with the dimension n of the system. Thus, for a system of 9 equations
and a relatively small initial region X® with X? = [0, 10) a rather sophisticated
method suggested in [17] requires billions of function evaluations in interval form
to locate the unique zero of the GS problem considered. The authors’ comment:
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“There were tog many function evaluations in order to be proud of reaching the

goal and to be really successful” speaks for itself.
The fact that known interval methods are rather inefficient for even moderate
values of n is not difficult to explain. There seem to be 4 basic reasony for this.

1. Since known interval methods for solving the GS problem are all one or
another form of the interval Newton method some interval extension JHX) of
the Jacobian J(x) of w(x) in X is needed at each iteration of the method; here
X < X'© denotes the box currently processed. At the initial iterations X is large
and J1(X) is generally rather a crude overestimation of the range J(X) of J(x)

in X.
2. All methods of this group are associated with solving a linear interval sysiem

ANy — x) = b(x) (1.2

with respect to y for each iteration. Here b(x) is a real vector (ignoring fol
simplicity of exposition the interval arithimetic implementation of the methoc
considered), x is usually the centre of X while A/(X) is an interval matrix whict
is either the interval extension J/(X) itself or is in one way or another relatec
to it. For instance, in methods using preconditioning [3]

AlX)y =BJ(X),  bx) = —By(x) (1.3a
where B is some real matrix. In Hansen’s method [2]
B=[Jx1"". (1.3b

Since the exact {optimal) interval solution ¥ of (1.2) s extremely hard to deter
mine, in practice an approximate interval solution ¥! o Y is found which &
once again, rather a crude overestimation of Y. Indeed, most often a compe
nentwise Gauss-Seidel procedure is used to compute ¥/ and it can be easil
seen that the overestimation of ¥ by ¥/ becomes more and more pronounced
n increases. Now let A(X) denote the interval matrix associated with the rang
JiX}) ie :
A(X) = BJ(X).

Obviously, this is the narrowest possible interval matrix for the current box
which can replace A(X)in (1.2). Furthermore, let Y denote the optimal interv
solution of the “best” linear interval system

AX)(y — x} = b(x). (1.
On account of inclusion monotonicity

Y cYc y! (1.
and the inclusion is proper and rather pronounced. Hence, initially, most ofte

Xcy! (1.
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and therefore the new box
X =Y'nXx a.7h

generated by the method for the next iteration is the same as the box X at the
current iteration. In this case X is to be splitted into two subboxes X; and Xz.
One of them is stored into a list L for further processing while the other is
renamed X and the iterative process continues on X.

3. The above two factors substantiate the third cause for low efficiency: there are
too many splittings at the early stages of the computation process. This, in turn,
gives rise to a long queue of boxes X" stored in L and awaiting processing. In
fact, splitting stops and reducing the size of X by (1.7) starts only at that moment
when the width of X becomes so small that the first two factors associated with
overestimation become insignificant.

4. Overestimation accounts for the ineffective functioning of the exclusion rule
Yinx=10 (1.8)

which deletes the current box X from further processing. Similarly to reducing,
deleting occurs only at the later iterations when the width of X becomes small
enough and the effects of overestimation become negligible.

It is to be noted that less effective reducing and deleting rules lead to a stronger
clustering effect.

An attempt to reduce the adverse effect of the first factor due to overestimation
is associated with vsing interval slopes ([6], {11], [12]. [20]) rather than interval
derivatives in evaluating J/(X). However. since this leaves unchanged the second
factor for low efficiency, further experimental evidence showed that the overall
improvement of the interval methods based on the use of interval slopes is still not
satisfying, especially for more complex problems of farger n [9], [12].

In this paper, a new method for tackling the GS problem which seems to have
considerably better numerical performance is suggested. It is based on the following
approach. First, the original system (1.1) 18 transtormed into a larger system of n’
non-lirear equations

flx)y=0; (1.92)
xe X' e R (1.9b)

in such a way that the resulting system (1.9a) is in separable form, i.c.
"
fi) =Y fylxy), i=ln (1.10)
j=1

This transformation has recently become possible due to a result obtained in {193
Then a new interval method is applied to system (1.9). The global solution of (1.9)
provides the global solution of the original problem (1.1). The new interval method

/



128 LUBOMIR V. KOLEV

exploits in a rather efficient manner the separability property (1.10) and reduces,
essentially, to solving the following linear interval system

Ay = BY(X) (1.11)

at each iteration v. Now, unlike (1.2) 4™ is a real matrix while B**(X) is an interval
vector. In contrast to (1.2) the optimal interval solution Y to (1.11) ix readily
obtained:

Y = [AY]7'BY(X). (1.12)

This is the main feature of the new interval method which accounts tor its compu-
tational superiority over the previously known interval methods. Indeed. using ¥
(instead of ¥ as in the previous methods) results in a faster rate of convergence of
the new method.

The paper is organized as follows. Section 2 presents the new method for solving
systems of separable form. A numerical example of a system with 2 = 10 is solved,
The method is extended to systems of arbitrary form in Section 3. The overall
efficiency of the resulting method is illustrated by the example considered in [17].
Concluding remarks are given in the last section.

2. Solving Separable Form Systems
2.1. THE NEw METHOD

We consider the GS problem related to (1.9) with f satisfying the separability
property (1.10). Several methods ([4], [5]. 171-193. [12]) have been proposed for
solving this problem for the special case where f,;(x,) = i, is a linear function for
j#iand f;(x;) are assumed continuously differentiable (CD) functions,

A new method for globally solving the separable form system (1.9) will be
presented here. In its present statement no restrictions on the functions f;,(x,) are
imposed except for the requirement that they be continuous in X}‘m.

Let X denote the subbox processed at the current iteration. First. a new interval
approximation of a component f;;{(x;) in X; will be suggested. Unlike previous meth-
ods where the functions f;(v;) are approximated in X; by enclosures using inerval
derivatives (4], [S], [7], (8D or interval slopes ([91. [12]), the new approximation
is chosen in the following form

LifXp) = By +ayx. X € X; (2.1
where By, = [b;;. F’;,-J,-] 15 an interval while g, is a real number. Both B,; and «j; are to
be determined such that the following inclusion property should hold

filyye By+ajy. xeX. (2.2)
A simple and efficient procedure for finding «;;. by, and by is suggested here for
the case of CD functions. It is motivated by clementary geometrical considerations

(Figure la) and can be readily adapted for the case ot functions that are only
continuous (Figure 1b),
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Figure 1. Geometrical illustration of the lincar interval approximation ol f;{x)mX; = [a;%]:
a) tor the case of a continuously differentiable function, by for the case of a piecewise-lincar
functions.

PROCEDURE 1. First, compute

L‘; = fijlx). fii = Fif(X)). (2.3)
Then a;; is defined as the slope
aiy=(f5 = £,)/ (% — x)}. (2.4)
: Let
' 1(x;) = by + ayx; (2.5a)
: be a straight line such that
filyy < hia), x5 € X, (2.5b)

i Thus, /1 is the lowest possible line of slope ¢; bounding f; from above in X; (see
Figure 1a). Similarly, let the straight line

bix} = by + ayx; (2.6a4)
have the property
) fyxp) Z blx), x € X (2.6b)

Thus, £ is the highest possible line of slope a;; bounding f;; from below in X, (see
Figure la).

| The unknown constants 4;; and bj; are determined as follows. Let pij(x;) denote
. . . I d i - . . . .
r the derivative of f;(x;), 1.e. pj(x;) = f(xj). Then the foliowing functional equation
'f

of one variable

pilx) —a; =0 (2.7

w
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is solved globally in X;. Let x}k), k=12, ..K, denote the k-th solution of 2. in
X furthermore, let x}m = X;. Now compute the quantities

b = Fia0y — agd, k=01 K. (2.8)
As is easily seen from geometrical considerations (Figure Ya)

b, = min{hj. k=01 K} (2.9a)
and

B, = max{by’ k=0,1.... K} (2.9b)

Finally, the interval

By = (b by (2.10)
is found. Thus, the linear interval approximation (2.1) having the enclosing property
(2.2) has been determined.

Remark, For simplicity of notation and presentation, the quantities L‘;“ fip aijs
x}f’, b}f’, by and 5.-}-, are assumed to be real numbers. It should, however, be borne in
mind, that in the actual implementation of Procedure 1 they must be computed usSING
interval arithmetic. Therefore, they are in fact intervals although their widths are
rather small. Rigorous bounds on all zeros of equation (2.7 in X; can be computed
using an appropriate interval algorithm (e.g., 5¢€ [11,Ch. 7 and 8).

A simple illustrative example of the procedure for determining b;; and b, will
be considered now. Assume that fi(x;) 18 & cubic equation in ;. Then (2.7) is 2

guadratic equation. Let x; and x; denote the corresponding Z€Tos. Several cases are

possible depending on whether both zeros belong to X; or not.
Case A. Both zeros belong to the interior of the interval X; as shown in Figure 1a
Now computing b}(-“, k =0,1,2 by (2.8) we see that in this case
T i ’ ]
bi'j = bf, '= fij(xj) — ajkX,
while
b, = b = Fils) = auky

Case B. The first zero belongs 10 X; while the second does not. In this case, ¥
need to compute only bf-}n and bf-j” since now k = 0. 1; thus

b.;j

il) . r
b‘j = f;j(x}) - a;'j'xj;

0y _ 5. .
b;‘j —fr;(£j) @ik

1l

Ii

Case C. Only the second zero belongs 10 X;. Itis casily seen that in this ¢
by = bl and by = b,

ﬁ
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Using the Procedure | a real matrix is introduced

A=1{-ay} (2.11)
and an interval vector B = (By, ..., B,)) is formed with
"
Bi=) By =lby byl (2.12)
i=1

On account of (1.10), (2.1), (2.2), (2.11), and {(2.12)
fl) e apg+B;, xeX. i=l,..n (2.13)

F=1

or in vector form

flx)e —Ax+ B, xekX. (2.14)
If y is a solution of (1.1) in X, then f(¥) = 0 and by (2.14)

e —Ay+B, velkX (2.1%)
Now we can state the main result of the section.
THEOREM 2.1. All the solutions v to

flx)=0 (2.16)
contained in X are also contained in the solution set S(X) of the system

—Ax+bh=0, beB (217
where b iy any real vector contained in B.

The proof is straightforward on account of (2.14) to (2.17).

Since B 1s an interval vector the set S(X) is a convex polyhedron. Indeed, (2.17)
is in fact a system of n linear equalities and 2n two-sided linear inequalities.

Using elementary set-theoretical considerations the following theorem can be
readily proved.

THEOREM 2.2. All the solutiony v to (2.16) in X are also contained in the inter-
section

PX)y=8X1nX. (2.18)

Since $(X) and X are convex polyhedra it is seen from {2.18) that P(X) is also a
convex polyhedron.

COROLLARY 2.1. If P(X) is emptv, i.e. if
Sy X #£0) (2.19

the svstem (2.16) has no solution in X.

S ——
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Let H(P, X) denote the interval hull of P(X), that is the smallest interval vector
{box) containing P(X). Consider the following iteration procedure

X(k+l) = H(P,X[k)) ~ X(k)‘ k 2 Q. {220)

Procedure (2.20) could be used for designing a method for finding al! real solutions
to (1.1 in X'©, Such an approach seems o be rather costly since 2n linear program-
ming problems are to be solved at each iteration to determine H(P. X*)). Therefore,
a simpler and, presumably, more efficient procedure is suggested here.

Let H{S, X) denote the interval hull of S(X). Then 1t follows from (2.17} that
H(S, X) is given by the formula

H(S.X)=A"'B. (2.21)

Let C = A~ ! (assuming A invertible) and Y = H(S.X). It follows from (2.21)
that the components Y = (Y, Y;] of Y are given by the formulae

Y=Yy, (2.22)
i=1
with
v = cijby. i ¢ 2 & (2.23)
= (.'Ubj'. it ¢ < 0,
Yi=) ¥ (2.24)
j=
with
3. = f'ijbj‘ if Cij = 0; (225}
Y T 0.

Now the following iterative procedure can be used as the basis for solving the GS
problem considered.

PROCEDURE 2. Let X'¥ be a current box. Using Procedure 1 determine C* and
BW corresponding to X', By formulae (2.22) to (2.25) compute y® The iterative
procedure is then defined as follows

kD = y® X0 k>0, (2.26)
The procedure may result in three outcomes.

A. The sequence X%+ converges 1o a colution £ as k increases. Actually. the
iterations are stopped whenever the width of X®*! becomes smaller than a
constant £ (accuracy with respect to x). Now ' is approximated by the centre
< of X**1 and x is substituted in (1.9a). 1f

ol = mrax[lj’,-(x")]. i=1,...nl> 6 (2.27)

(g, is the accuracy of x* with respect to the sysiem of equations) then the
iterations are resumed; otherwise x¢ is accepted as a solution 1o {1.9).

_/
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B. At some &
YW ~ x0 - (2.28)

Since ¥ = H(S, X) 2 S(X) it follows from Corollary 2.1 that system (2.16) has
no solution in X® if (2.28) becomes valid. In this case X' is discarded from
further consideration.

C. The sequence X**!" converges to a fixed interval {box) X™. In practice, the
procedure is stopped whenever the reduction in the volume V(X**") of the
current box X+ as compared to that of the preceding box X! is smaller then
a constant g3, i.e. it VIX**Dy 5> e3v(X%) In this case X%+ iy split along its
widest side into two boxes XL and X* (left and right). The right box is stored
into a list L for further processing. The left box is remained X© and the iterative
procedure (2.22) to (2.25) is resumed.

Procedure 2 is based on vector operations. Its convergence can be improved
if componentwise operations are introduced. Thus, whenever a reduction of a
component X{“*1? occurs, this will be used immediately for reducing (if possible)
the remaining components XJ-(“”.j =i+1,....n

To introduce this componentwise algorithm we need to modify Procedure 1 and
Procedure 2 to Procedures 3 and 4, respectively.

PROCEDURE 3. In this procedure, all the computations in Procedure 1 are
carried out for a fixed j and the corresponding X;. Thus, on exit from Procedure 3
we have the j-th column A; of A and an interval vector B; whose components are
B i=1,..n

I L 1

For reasons to become clear later, it is expedient to introduce two real matrices
By and B, and to store _fg,-j and 5,-}- in the j-th row of B; {lower end-points) and B,
(upper end-points), respectively.

To introduce Procedure 4, formula (2.26) is written in componentwise form

XD =y~ xR, (2.29)
Now, according to the idea to get the most out of the reduction of X ¥+ we check
whether

X}“” - Xf“. (2.30)
If (2.30) holds (in practice if the reduction is greater than some threshold &, i.c.
if wX[**) < gw(X{)) Procedure 3 is immediately called to recompute the
corresponding i-th column A; of A. and the i-th columns B! and B} of B’ and B,
respectively. Let these updated vectors are denoted A, B! and BY. Similarly let A%,
C, and B!, designate the corresponding updated matrices A%, €% and interval
vector B*'. Now, the lower and upper end-points of B’ are easily evaluated:

BU(J = ﬁ(‘f) _ B:’ +E!{'; (2.31a)

Bk g% _ B! + B, (2.31b)
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THEOREM 2.3. Let f : D ¢ R" — R" be u continuously differentiable function in
the domain D and X'% < D. Introduce the interval operator

K(X(k)) = H{S(k),X(k)} — A_I(X(H)B(X{k)), k>0 (2.34)

where AXX®) and B(X'®), defined in Procedure 1, correspond to the current box
X% Then, if at some k-th iteration
K(X®y g x® (2.35)

the above inclusion implies the existence of a solution to (2.15) in X®,

Proof. Let y be a solution to (2.15). Then {2.15) can be transformed into the
fixed point format

x = Cx)b(x) = P{x) (2.36)
where C: X% — R" and b : X%© — R" are to be determined. We choose

Clx) 2 € = A~ (xW); (2.37a)

by £ C™ = b e BX). (2.37b)

Obviously, for any x ¢ X%
P(x) e K(X*™). (2.38)

Thus, if (2.35) holds, then P maps X*' into itself. Therefore, by the Shrauder fixed
point theorem P has a fixed point in X**? and hence f(x) = 0 has a solution in X!, O

The theorem can be extended in a straightforward manner to the componentwise
version of the present method as introduced by Procedure 5.

Now we shall consider the convergence rate of the sequence (2.26) towards a
solution. We need the following well-known facts from interval analysis, For an
inierval [a, b] (@ < B), and an interval vector X = (X,,...,X,,) define the width of
[, b1 and X as follows

w(fa, b} =b—-a (2.392)

w(X) = max w(X,). (2.39b)
If

Y = AX

where A is a real matrix with elements a;; then

WYy = Jay|wx)) (2.40a)
i=1

and

w(¥) < [|IA]lw(X) (2.40b)
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where

AN = max > fayl. (2.40¢)
i=)

Additionally, we shall make wse of the following lemma.

LEMMA 2.1. Let fi(x;) be a CD function in X;m. Furthermore, let B be determined

as in Procedure 1. Then for a narrow enough interval X; < X j(ﬂ) {neglecting terms
of order higher than 2)

w(Bjj) = Byw (X)), (2.41)
Proof. For simplicity of notation the subscripts will be temporarily dropped. If
X is narrow enough, equation (2.7) will have a unique solution x” in X. With no loss

of generality, assume that f(x} is convex in X, i.e. f7() > 0in X = [x,x]. In this
case

b=fx)—ax, b=fx)—ax.

But f{x) can be expressed approximately as
1 2
Q) = f&) + f1ONx — x) + Ef"(x’)(g —x')*.

Taking into account that f'(x") = ¢ we have

wiB)=h—b= %f"(x’){g - X'

We can refate x” — x to w(X) as follows

Hence
] ~ 3
w(B) = 51"’(X’}aw“(X} = fw(X)

which completes the proof. 0O
Now we are in a position to state the following theorem.
THEOREM 2.4, Suppose that
KXy e xt® (2.42)

holds for ail k > kg, Lo, that the frerative procedure (2,.26) converges to a solution
x* and the Jacobian J(x) is non-singular in X', Then the convergence rate towards
x* is quadratic.
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Proof. Tt follows from (2.21) and (2.40a) that

w(¥yy = |eyiw(By). (2.43)

i=1

But, using (2.12) and (2.41)

w(Bj) =Y Byw (X)) (2.44)
=1
Hence
n
w(¥y =" Ryw?(X)) (2.45a)
=1
with
o
Ry=>"lcylBy. (2.45h)
i=1
Now it will be shown that
w(¥) < ||R]|w*(X) (2.46a)
where
R={Ry}. (2.46h)
Indeed
H 5 o s
w(¥) = max w(¥;) = max !Z; Ryw* (X)) < mux !;‘ Ry |w? (X)), (2.47)

Now {2.46a) follows from (2.47), (2.39b), and (2.40¢).

Due to the invertibility of J(x), matrix C has bounded elements ¢;;. As f 18 a CD
function, f”(x} < oo in X® and the coefficients B, are also bounded. Hence (as
ceen from (2.45b)) |[R]| < v in X*)_ Finally,

w(¥) < pwi(X) (248)
which completes the proof ot the theorem. o
Now we shall consider the question of uniqueness.
THEOREM 2.5. Ifar some iteration kg of the iterative procedure (2.26) the condition
K(x oty o x o {2.49)
iy satisfied and the real functions f;(x;) are all strictly monotone in X_;k”l, then:

a)} there is a unique solution x* 1o f(x) =0 in X s
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h) the modified procedure
X{k+1) = K{X(k)} = C(kn)B(k)‘ L 2 k{) (250)

where C*%0 = (A%~ g 4 constant matrix while B® is computed as in Pro-
cedure [ (using, however, the same slopes ufjk”) at each iteration), converges to
x".

Proof Let for simplicity of notation C = C* and kg = 0. On account of (2.49)
and (2.50)

X® = B c x© (2.5ta)
50

w(XD) < w(x), (2.51b)
Taking into account (2.51) and the monotonicity of f;(x;) it is easily seen that

B g, (2.52a)

(Indeed, it follows from (2.51a) that X;” c XJ,-“” for each J. As is readily seen, the

above inclusion and the strict monotonicity of f;;(x;) in Xj“’ imply that Bf-j” C Bg”

for all { and j. These inclusions lead to (2.52a} on account of (2.12).) Hence
X2 =M o xh, (2.52b)

Thus, we have shown that procedure (2.50) generates a nested sequence {X'*'}
of decreasing width w({X*"). By Theorem 2.3 x* exists and is unique because
w(X'®} — 0 as k — eco. This completes the proof of Theorem 2.5. m)

2.3. A NUMERICAL EXAMPLE

The numerical performance of the present method has been tested on several systems
of equations of the form

fy=px) —Hx—-5=0 {2.533a)
where
@i{x) = @ilx), i=1,...,n (2.53h)

and H is a constant matrix with » ranging from 2 to 20. In all the cases ¢;(x;)
are continuously differentiable functions. The method has been implemented in its
vector form.

To illustrate the improved numerical etficiency of the new method an example
(considered in [9] and [18]) will be presented here. The system (2.53) is now given
by

@) =255 —10.5x7 + 118y, i=1,...10;
H={h;} with hy=-1; (2.53¢)
s=(—=1,-2,-3,...,-10).
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Table 1.

Method MI M2 M3  M3A

N 524143 116522 146 127

The initial box X‘¥ is defined by
xief{~14], i=1,....n

The accuracy €; has been chosen to be 1074,

Two interval methods were applied in [9] to solve the GS problem associated
with (2.53). The first method denoted here as M1 is a variant of a method due to
Alefeld and Herzberger ([1], Ch. 22); it is based on the use of interval derivatives.
The second method designated as M2 is an improved version which uses interval
slopes. This paper’s method denoted as M3 has also solved the problem considered
and has found within the some accuracy ¢, = 104 all the 9 solutions contained in
X©. However, the data in Table 1, concerning the number of iterations N; required
to solve the GS problem considered reveal that the present method is vastly superior
to the other two interval methods as regards computer time.

On account of its fast convergence rate the new method has also improved
characteristics as regards memory volume requirements. Indeed, the maximum
number of boxes n,, stored during computation reached the value of 3 for method
M3 while n,, was manifold higher for M1 and M2. It should also be stressed that
no clustering effect has been observed in solving the present example by M3. In
contrast, among the two previous methods, even the better method M2 generated
decades of clustering boxes, thus requiring much bigger memory volume.

In practice (at the early stage of various design problems) we do not always need
to solve the GS problem completely; most often, it suffices to only find the number
of solutions p contained in X', This simpler problem can be efficiently solved
by a modification of the present method denoted M3A. The version M3A is based
on Theorem 2.5: The iterative procedure (2.26) is interrupted whenever condition
(2.49) is satisfied and is resumed by retrieving a new box from the list L if L is not
empty. The corresponding number of iterations for the example considered is given
in the last column of Table 1.

3. Solving General Form Systems

3.1. TRANSFORMATION TO SEPARABLE FORM

In this section, the method presented in the previous section will be extended to
systems of general form. More specifically, the system’s components y;(x) are
assumed to be factorable functions [20], i.e. functions that are composed of four
arithmetic operations (+, —, %, /), unary operations (sin, exp, log, sqrt. abs, etc.) and
the power operation ().
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The approach herein adopted is to transform the general form system (1.1) to
the separable form (1.9), (1.10). The theoretical basis for such a transformation
is a famous theorem due to Kolmogorov’s work [10] published as early as 1957.
However, its proof is not constructive and only recently has a simple algorithm been
proposed [19] to convert factorable functions into separable functions automatically
by computer. To maintain completeness, several basic facts from [19] will be briefly
presented here.

Let f; and fx be subfunctions of y containing at least one variable. Consider
the following three cases

F=Ffr*fr (3.1)
f=ful!fr (3.2}
f= e (3.3)

If both fr and fx contain only one and the same variable then f is obviously
separable in all the three cases.

If f; contains only one variable and fz contains only another variable then the
functions (3.1) to (3.3) can be easily transformed into separable form as follows.
The transformation of (3.1) is:

= (0 = (L) = )1 2
Fe L fr— f=1{n (fu)* — (fr)’) (3.4)
vi=fr+fr
The second case is reduced to the first by letting
fri=11fr
and applying (3.4).
For the third case the transformation suggested in [19] is:
f=exp(y)
; y1 = fr* log(fr):
f=U* — (3.5)

v = (027 = () — (log(s)") 1 2
v2 = fr +log(fL).

It should be mentioned that (3.5) ts valid only if f; > O for all values of its
argument.

If both f; and fg contain more than one variable then we first introduce auxil-
iary variables and apply the above approach. To illustrate this possibility consider
formula (3.1). In this case

f =y
F={P =P -4 /2

f=fixfp— v =1 (3.6)
va=fg

Yi=sy +y.
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Now, by representing f; and fg in separable form, f can be put into separable
form.

In order to make f and fz separable, we perform the above transformation to
fr and fg, regarding them as f. This process has been implemented as a computer
program in [19].

To illustrate the above approach we shall consider an example.

3.2, AN ILLUSTRATIVE EXAMPLE

We take up the system considered in [17]

o(x)=0, k=1, ..4
Bix)=0, k=1,.,4; (3.72)
yix)=0

where x ¢ RY

a(x) = (1 — X|x'_3}x3{t'l'r-‘u'"* — e 107 - s l07h] |}
—gsp tgaxa, k=14

Biix) = (1 — X|13}X4{('['r"‘(""“ o= e 07 4 g 1077 [} (3.7b)
—gspX) & k=14

y{X) = x4z — Xoxa.

The numersical constants g;; are given in [17}. As in [17], the problem is to
establish computationally that (3.7) has a unique selution in a given initial box X"
with sides

XV =, %L i=1,..ng (3.7¢)

where ny = 9.
To reduce (3.7) to separable form we first introduce the auxiliary variables

vl — guar 07 — gyl

Xgpp =€

X]34g = PRULEI TR — gy 107 4 ey 10 (3.82)
k=1,...4

Xy =xx2, X9 = —xjgla, xe = (1 — xgd. (3.8b)

Using (3.7) and (3.8) we obtain the following system of 20 equations:
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X9y — 1Y — gax +gaex2 =0, k=1.....4

nxg.x — xs(gix — 107 guxy — 107%g5x3) =0, k=1,...4;
X0(X)3ee — D+ gax —gux1 =0, k=14

In X130k +x6(—g1e + 82 + 10 gy — 10 ey =0, k=1,...4

(3.9)
N1 —xnxg =0
xpx2 —x3 =0,
(I —xyghey — x9 = 0;
(1 — xig)xg — x20=0.
Since equations (3.9) contain the producis xjxz, xaxq, xjolxg.e — ), Xelgne —

2w 10773 — gox - 102 xy), etc., this form will be called semiseparable.

One way to get a system of separable form is to eliminate the products in (3.9),
using (3.4) and (3.6). Thus, a final system of separable form consisting of a total of
43 equations will be obtained.

An alternative approach to reach separability is suggested here. It is based on
the following idea. Consider the preduct

xy. xe€X, yveV
where X and Y are intervals. If xy and vy are the centres of X and ¥, respectively,
then

xy = (xg + 000 + v) = xovo + You + xgv + 4y = —xpvg + vox + xpy + v, (310

When x € X and y € ¥, the centred variables # € R, and v € R, where R,, R, are
the radii of X and Y. Let R = R.R, it follows from (3.10) that

xve —xgyp+vpx+xgy+[—R.R], xeX, veVt. {3.113

Thus, the product xy has been enclosed by an interval expression in separable torm,
ie.

xy e ax+ fiy+ By, 312

where B, = —xoyp + [—R, R] is an interval.
The above approach is readily extended to products of the form

x(a(] + Z a),—xj)‘
i

An appealing feature of the alternative approach is the fact that it converts the
semiseparable form into separable form without introducing new vartables and
equations. Indeed, using this new approach the original system (3.7) has been
transformed into a separable form system (2.17) of only 20 equations (rather than
to 43 equations if the standard approach of |19] were applied).

Two algorithms have been elaborated to solve the GS problem associated with
(3.7). They are based on the version M3A of the present method (vector form of the
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method using the uniqueness test from Section 2.2). To present these algorithms we
need to distinguish between the original variables xp ;, | < ¢ < 9 and the auxiliary
vaniables x, ;, 10 < i < 20. So we introduce the real vectors

xp = (x,1. ..., %p,9)
Ay = (xu, {0y - Xy, 2(]);
X = (X0, X,)

and the interval vectors Xy, X, and X. Now (3.8) can be written in the form

X = fn(x(])- (3]3)
Hence ’
Xu = fulXo). (3.14)

where f,(Xy) denotes the range of X, under f,,. Since each original variable occurs
only once in {3.8), f,(Xp) can be computed by a single interval computation accord-
ing to a well-known theorem from interval analysis.

ALGORITHM Al.

Step O (Initialization). Using the initial box X;,m given by (3.7c} and relation (3.14),

the corresponding initial auxiliary vector X'? is computed. Thus, the initial
vector
0 ©) ot
X=Xy Xy
is formed.
Step 1. The version M3A is applied to the box X9,

The second algorithm is a modification of Al; therefore, only the relevant
differences will be noted.

ALGORITHM AZ2.

The modifications associated with this algorithm are, essentially, related to the
case where the current box X is reduced in size.

At the current i-th iteration, X is transformed by Procedure 1 1o yield vector Y.
Now a new vector X! is obtained

X'=vynx

Itis partitioned into two parts: X} and X! corresponding to the original and auxiliary
variables. Using X! and (3.14) we obtain

vl _ eyl
Xr! = _f{;(X{J }
Next we find the intersection

1 _ ¥l 1
Za -Xn I"\X”
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Table 2.
Algorithm Al AZ
N; 183 89

to form the vector
X'=(Xy.Z)

corresponding to the new iteration i + 1. Finally, X' is renamed X and the iteration
process continues as in Al.

It is also to be noted that unlike A1 the width w of the current box X' (needed to
assess the accuracy by comparison with g} is determined on the basis of the original
vector X, Similarly, only X is used in assessing the reduction of the boxes.

The system (3.7} 1s known to have a solution which is approximately

x'=(09,0451,2.8,8,5,12).

The initial box X{ ' for the original variables was chosen o be centred at x*. that
is, each component X}% was expressed in the form

X =xf +i-rrl. (3.15)

Table 2 provides data about the number of iterations needed by Al and A2 to
establish uniqueness of the solution x* in X9 when r = 0.05.

It is worthwhile mentioning that the sophisticated version of the intervat Newton
method from [17] (using elaborate subdivision strategies) establishes the existence
and uniqueness of the solution to (3.7) in the box (kecping for simplicity only 3
decimal places)

0.89902 0.90098 )
0.44902 0.45098
0.99902 1.00098
1.99902 2.00098
X;=¢ 799902 8.00098 ;.
7.99902 8.00098
499902 5.00098
0.99902 1.00098
1.99902 2.00098 )

Using X;, we can compute its width w’= 0.00196, or approximately (.002. it
is seen that with r = 0.05 the width w = 0.1 of the box X is approximately 500
times larger in comparison to that of the box X;.

4. Conclusion

In this paper, the problem of finding {within preset accuracy) the set of all real
solutions to a system of nonlinear equations (1.1} contained in a given box X
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(the GS problem) has been considered. The only assumption about the nonlinear
functions involved is that they are continuous in X,

A new method for solving the GS problem has been suggested. It is based on
a transformation of the original system (1.1) into a new system (1.9) of separable
form (1.10). The latter system is then solved globally by a new interval method
which exploits the separability property (1.10). More specifically, each function
fij(x;) from (1.10) is approximated dynamically by a linear interval function Lii(X;)
defined by (2.1). Thus, at each iteration of the method a linear interval system
(1.11) with a real matrix A is solved. This advantageously distinguishes the present
method from the other known interval methods where a much more complex linear
interval system having an interval matrix and a real right-hand side vector is to be
solved.

Experimental data show that as regards computer time and memory volume
requirements the present method exceeds considerably the other known methods
for solving the global solution problem considered. It should also be mentioned
that so far no clustering has been observed.

There seem to exist several possibilities for further improvement of the numeri-
cal efficiency of the new method. Since the equivalent separable form system (1.9)
is, generally, much larger than the original system but has, at the same time, a rather
sparse structure, one approach should appeal to sparse matrix techniques in imple-
menting the componentwise version of the method. Work is presently in progress to
accomplish this scheme. Using such an approuch it would be interesting to compare
the relative efficiency of the two possible conversions to separability: the semisep-
arable form suggested and empioyed in this paper or the standard separability form
from [19]. Another possibility is to incorporate into the present method ideas from
the constraint propagation method. Preliminary limited experimental results indi-
cate that such an approach seems to be rather promising. Finally. it remains to
mvestigate the convergence properties of the alternative iterative procedure (2.20)
which is based on linear programming implementation; it may turn out that such
an approach could Icad to a method of improved overall numerical efficiency.
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