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AN EFFICIENT INTERVAL METHOD FOR GLOBAL ANALYSIS
OF NON-LINEAR RESISTIVE CIRCUITS

L. V. KOLEV*
Department of Automatica, Technical University of Sofia, 1756 Sofia, Buigaria

SUMMARY

A new method for finding the set of all operating points of non-linear resistive circuits is suggested. Tt takes into account
the fact that the circuit equations are in the so-called separable form where any equation f;(x} is the sum of terms %),
each term depending on a single variable. The method is based on the introduction of an approximation of every real
non-linear function f,(x,) by an appropriate linear interval function, i.e. by a real linear function having an additive
interval term. The parameters of the linear interval approximations are dynamically updated at each iteration of the
computational process,

Numerical experiments show that the computational efficiency of the new method is vastly superior to that of other
known methods for global analysis, especially for circuits of large size. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is well known that the problem of global analysis of non-linear resistive circuits (locating all dc operating
points of the circuit investigated) consists of finding all the real solutions of a corresponding system of
non-linear algebraic equations. More specifically, the following problem hereafter referred to as the GA
problem has been considered in numerous publications.

The GA problem. Let f:X© < R" — R” be the function describing the dc operation of the circuit studied
where X is a (large enough) ‘box’ in R". Find the set S(f, X'®) = {x'V, ..., x®} of all real solutions x*,
s=1,...,p of the system

fix)=10 ()
which are contained in X%, i.e. when
xe X9 =(X{",.. X (2a)
where each component X{® of X is an interval
Xy=[x; %] (2b}
Typically, f(x) is in the well-known hybrid representation form
f(x)=wp(x) —Hx —s (3a)
with
edx}=@dx), i=1,...,n (3b)
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82 L. V. KOLEV

which describes a large class of non-linear dc electronic circuits! or models the equilibrium states of circular
neural networks.? If the circuit investigated contains bipolar and MOS transistors, the non-linear functions
in (3b) take on the form?®

@unlx) — @ialxis n) if iis odd

Xlh=
@i {—an-ﬂ—wﬂm if i is even

The functions @.(x;) (or @;;(x) and ¢z(x;+ ) model physical two-terminal non-linear elements and are,
therefore, originally smooth enough functions (at least continuously differentiable). in this case the GA
problem will be referred to as the CDF problem. In order to simplify the original CDF problem, the functions
@i(x)) are often approximated by piecewise-linear functions and then the ensuing GA problem will be referred
to as the PWL problem. The solution of the GA problem presents enormous difficulties, especially for
larger n.

Presently, there exist several interval analysis methods®™!° that are capable of infallibly solving the CDF
problem within prescribed accuracy. Experimental evidence has however shown that their computational
efficiency only permits the analysis of circuits of moderate dimensionality n. Indeed, all interval methods
known to date involve recursive splitting of the initial box X ® into subboxes X * and locating the solution
available in X” or establishing its absence in X°*. Unfortunately, the number of X* and hence the
computational effort needed to solve the GA problem tends to grow exponentially with the dimensionality of
the problem.

An improved interval method has been recently suggested in Reference 8. It is based on the use of the
so-called interval slopes? {instead of interval derivatives used in the previous methods). Although this method
seems to be the best in the group of interval methods, its applicability for circuits of higher dimension still
remains questionable.

In this paper, a new highly efficient interval method for solving the GA problem (both in its CDF or PWL
form) will be suggested. It is based on a dynamically updated interval approximation of the non-linear
functions which exploits to a fuller extent the fact that the circuit equations (3) and (4) are of separable form.
A function f(x) on n variables is called separable if it has the following form

f9= 5 £ )
i=1

Clearly, functions (3) and (4} are separable.

The separability property has already been employed with the view to improving the numerical efficiency
of a continuation method for tracing solution curves in Reference 11 and of non-interval methods for
non-linear analysis of resistive circuits in References 12 and 13.

The method herein suggested is derived in Section 2. Two algorithms implementing the new method are
presented in the next section. The first one is based on vector form operations. The second algorithm is an
improvement obtained by the use of componentwise computations. Finally, in Section 4 the numerical
efficiency of this method is compared with that of other global analysis methods.

2. BASIC RESULTS

The new method is based on some theoretical results to be presented in this section.

Let X denote any subbox X " generated during the computational process by splitting the initial box X °.
First, a new interval approximation of a component f;{x)) in X; will be suggested. No restrictions on the
functions f};(x;) are imposed except for the requirement that they be continuous. The above approximation is
illustrated graphically in Figure 1 for the case of continuously differentiabte (CD) functions.

fnt. I Cire. Theor. Appl, 26, 81-92 {1998) ii® 1998 John Wiley & Sons, Ltd.
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Figure 1. Geometrical illustration of the linear interval approximation of fi;{x)) in X, = [x,, x,]: (a) lor the case of a continvously
differentiable function, and (b} for the case of piecewise-linear functions

Y
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Unlike the previous methods where the functions f;(x} are approximated using interval derivatives*~" or
interval slopes® ® the new approximation of f;;(x;) in X, is chosen in the following form:

Lu(XJ) = b!} + AiiXpn Xy € Xj (6}

where b}; = [b,;, b;,] is an interval while a;; is a real number. Both b}, and g;; are to be determined such that
the following inclusion property should hold:

f[j(xj}EbEj"' a,-jxj, IJEXJ- (7}

A simple and efficient procedure for finding a;;, b;; and b;; is suggested here for the case of CD functions. It is
motivated by elementary geometrical considerations and can be readily modified for the case of PWL
functions.

Procedure 1. First, compute

Jy=Fxd  fa=1y%) (8)
Then a;; is defined as the slope

aiy = {Jiy = fi)/(%; — x)) %

Afterwards, the following equation is solved for x;
d r
dx, (fid = fi5(x)) = ayy (10)

In the general case (10) will have several solutions. They all can be located infallibly using an interval version
of the Newton method (the so-called extended interval Newton algorithm, Reference 5, Section 1.4.1). Among
them, two solutions denoted x" and x” are to be chosen such that the following conditions should be satisfied.
Let

!1(x1)=5u+auxi (11}
be a straight line passing through the point (x}, f;,(x})) and having slope a;; such that

Silx) €hilx) xeX; (12)

© 1998 John Wiley & Sons, Ltd, Int. 3. Cire, Theor. Appl. 36, B1 %2 [19%8)
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Similarly, let the straight line
Lix) =by + ayx; (13)
passing through the point (x}, f;,(x})} have the property
Sulx) = hix), xeX; (14)
Now it is easily seen that
by =fislx) —apg, by =06 — ayx; (15a, b}

In the special case where f;,(x)) is either convex or concave in X ;, equation (10) has a unique solution . In
this case formulae (15} are to be modified as follows. If f;;(x;) is convex then let x; = x; and x] = X; similarly,
in the case of a concave function fj,(x) let x; = %, and xj = x,.

The above procedure remains, essentially, the same in the case of PWL functions f;,(x;}. The only difference
is that the points x; and xj are now found directly on the PWL function by elementary geometrical
consideration.

Using the above procedure a real matrix

A = {a,}
and an interval vector b' = (b, ..., bL) are formed with
b= % b (16)
i=1
On account of (5), (7), (12), (14} and (16)
flxre Y ayx;+ b, xeX, i=1,..,n an
i=1
or in vector form
fix}eAx +¥d, xeX (18)
If y is a solution of (1) in X, then f(y) = 0 and by (18)
Oedy+b, yeX (19)

Now, we can state the main result of the section.

Theorem 1. All the solutions y to

J(x)=0 (20)
contained in X are also contained in the solution set S{X) of the system
Ax+b=0, beb (21)

where b is any real vector contained in b,

The proof of the theorem is given in the appendix.

Since #' is an interval vector the set S{X) is a convex polyhedron. Indeed, (21) is in fact a system of n linear
equalities and 2n two-sided linear inequalities.

We are ready to state another basic result.

Im. J. Circ. Theor. Appl., 26, 81-582 (1998} © 1998 John Wiley & Sons, Ltd.
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Theorem 2. All the solutions y to (20) in X are also contained in the intersection
P(X)=8(X)nX (22)
(See the appendix for the proof of the theorem.)

Corollary 1. If P(X) is empty, ie. if
S(X)nX =0 23

the system (20) has no solution in X.

Let H(P, X) denote the interval hull of P{X), that is the smailest interval vector (box) containing P(X).
Consider the following iteration procedure:

Xk+1) o H(P(X“"))nx““, k=20 (24)

Similarly to other methods*™®, procedure (24) may be used for designing a method for finding all real
solutions to (1) in X©. Such an approach would, however, be rather costly since 2n linear programming
problems are to be solved at each iteration to determine H(P{X%)). Therefore, a simpler and, presumably,
more efficient procedure is suggested here.

Let H(S, X) denote the interval hull of S(X). Furthermore, let B = — b' with components

B,=[B,B]=[-bs —b] (23)
If the matrix A is not singular, H(S, X) is given by the formula
H(S,.X)=A"'B (26)

Indeed, H(S, X) is by definition the interval solution of the following linear interval equation:
Ax=b, beB (27

Since A is a real non-singular matrix formula (26) is valid. (In the case where A happens to be singular, the
current box X is split along its widest side into two boxes and Procedure 1 is applied to each box separately.)

Let C = A" and Y = H(S,X). 1t follows from (26) that the components ¥; = [ y;, 7] of y are given by the
formulae

Yi= Z Yy (28)
=1
with
CcyB, f Cy;z20
y1={ ust ol (29)
= CyB, if C;<0
Vi= 2 )-’u (30)
=1
with
cyB, ifC,=20
Jr’-u={ v l y (31)
CUE‘ lf CU < 0

Now, the following interative procedure based on H(S, X) is suggested here.

Procedure 2. Let X** be the current box generated by the present method. Using Procedure 1 determine
C® and B™ corresponding to X%, By formulae (28)-(31) compute Y™ The iterative procedure is then

© 1998 John Wiley & Sona, Ltd. Int. I. Circ. Theor. Appl., 26, B1-92 {1998}
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defined as follows:
Xkl — yRI~AX® k=0 (32)

The procedure may result in three outcomes.

A. The sequence X** " converges to a fixed interval (box) X*. In practice, the procedure is stopped
whenever the reduction in the volume of the current box X ** ! as compared to that of the preceding
box X **is smaller then a constant ¢,. In this case X ** ! is split along its widest side into two boxes X*“
and X*® (left and right). The right box is stored into a list L for further processing. The left box is
remained X'?" and the iterative procedure (28)-(32) is resumed.

B. At some K

Y®RAX® = (33)

Since Y = H(S, X) = S{X) is follows from Coroilary 1 that system (20} has no solution in X* if (33)
becomes valid. In this case X* is discarded from further consideration.

C. The sequence X** 1 converges to a solution x' as k increases. Actually, the iterations are stopped
whenever the width of X ** ") becomes smaller than a constant ¢, (accuracy with respect to x). Now x* is
approximated by the centre x° of X**!' and x® is substituted in (1). If

tol = max[|fi(x*), i=1,...,n] >3 (34)

(g4 is the accuracy of x° with respect to the system of equations) then the iterations are resumed;
otherwise, x° is accepted as a solution to (1).

If outcomes B and C occur then a new box (the first box stored in L) is retrieved from L, renamed X *” and
Procedure 2 is again applied. It can be shown (similarly to References 4-8) that this process of generating,
storing the retrieving subboxes will terminate in a finite number of iterations locating all the solutions to (1)
within prescribed accuracy or establishing the absence of solutions to (1} in X9,

Since the present method is capable of solving both the CDF and PWL versions of the GA problem,
henceforth only the former version will be considered.

3. NUMERICAL IMPLEMENTATION

Based on the theoretical results from the previous section a basic algorithm of the new method has been
elaborated.

Algorithm |

Step 0. (Initialization). Let X = X%, v = 0 (v is the number of iterations), n, = 0 (number of solutions in
X', 1 = 0 (number of boxes stored in L). Assign values of I, (length of the list L), &,, £; and &,.

Step 1. Call Procedure 1 to compute the real matrix A and the interval vector B corresponding to X.

Step 2. Compute C =A%,

Step 3. Call Procedure 2.

Step 4a. If Procedure 2 terminates in outcome B, proceed to step 5.

Step 4b. If it stops in outcome C print the result in real and interval form, put n, = n, + 1 and go to step 5.

Step 4c. If outcome A occurs, then split the current box into X, and Xg. Store XgintoLandput!{ =1+ 1.
Rename X, as X and go back to step 1.

Step 5. If | = 0, terminate and print n,. If n, = 0 then (1) has no solution in X ‘?, otherwise n, indicates the
number of solutions located in Step 4b.

If I > 0 then proceed to next step.

Inr. L. Cire. Theor. Appi., 26, 81-92 (1998} © 1998 John Wiley & Sons, Ltd.
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Step 6. Retrieve the first element of L (the first box stored in L), rename it X and put ! =! — 1. Resume the
computation process from step 1.

Algorithm 1 is based on vector operations. Its convergence can be improved if component operations are
introduced. Thus whenever a reduction of a component occurs, this will be used immediately for reducing {if
possible) the remaining components X{**", j =i + 1, ... ,n. Additionally, a more effective exclusion rule
than (33} will be employed.

To introduce this componentwise algorithm we need to modify Procedures 1 and 2 to Procedures 3 and 4,
respectively.

Procedure 3. In this procedure, all the computations in Procedure 1 are carried out for a fixed j (that is for
a fixed column) and a given X ;. Thus, on exit from Procedure 3 we have the jth column A4; of A and an
interval vector b} whose components are bb, i =1, ...,n Forreasons to become clear later, it is expedient to
introduce two real matrices B’ and B* and to store b;; and b;; in the jth row of B’ (lower end-points) and B*
{(upper end-points), respectively.

To introduce Procedure 4, formula (32) is written in componentwise form

XEHD = yRax® (35)
L L L
Now, according to the idea to get the most out of the reduction of X**'' we check whether
YR+ — (36)
3 3

If (36) holds (in practice if the reduction is greater than some threshold ¢,) Procedure 3 is immediately called
to recomputed the corresponding ith column A; of A, and the ith columns B! and B! of B" and BY
respectively. Let these updated vectors are denoted A, B{ and BY. Similarly let 4%, C% and B* designate the
corresponding updated matrices A%, C% and interval vector B¥. Now, the lower and upper end-points of
B® are easily evaluated:

BY =gk Bl B {374)
Bw — g% _ B + B* (37b)

It is seen from (28)—(31) that to compute the next component Y{¢, we need the updated row C{¥, corres-
ponding to the updated matrix A%, The latter one is equal to matrix A* except for its ith column A that is
replaced by the updated column 4;. Thus, C%), can be found by updating the matrix C*' = (4*) "' when the
ith column 4A® of A® is modified by the increment vector

A=4,— A% (38)
Then the updated matrix &* can be found inexpensively (requiring roughly n* multiplications) by
G ot _1 C(HDictk} (39)
o

with
=1 + (C(k]D[}g[
where D, is a matrix whose all columns are zero except for the ith column which is A,
Having determined % ,, finally Y is evaluated by formulae (28)-(31) where C¥ | and A% are used.
Now, we are in a position to present Procedure 4.

Procedure 4. For a given X, corresponding to a fixed index i call Procedure 3 to yield the new vector 4;, B
and B?. Compute the interval vector B* by (37). Determine the real vector C*) | as the (i + 1)th row of {®
computed by (39). Finally, evaluate Y, by (28)-(31).

& 1998 John Wiley & Sons, Lid. Int. J. Circ. Theor. Appl., 26, B1-92 {1998)
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The componentwise algorithm incorporates an improved exclusion rule (as compared te (33)) which is
based on (23). From the definition of S(X} it is easily seen that condition (23) is fulfilled for the ith co-ordinate
if X does not intersect the ‘stice’ defined by

Yax;<B,  Bi<} ayx {40a, b)
i=1 Jj=1
Now, define
Zi= Y Zj (41a)
i=1
where
ax, ifa,;=20
2y = { vs (41b)
ﬂuX} if ﬂu - 0
and
Z_,' = Z fu (423)
i=1
a,x; if ay; =20
7 ={ S (42b)
ai;X g if Ay < 0
Hence, the new exclusion rule states that (23) is valid if
Zj > Bg or Z-j < gf (433, b)

The componentwise algorithm is thus based on the following procedure.

Procedure 5
Step 0. Leti=0.
Step 1. Puti=1i+ 1. If i > n go to Step 4, else proceed to next step.
Step 2. 1f the exclusion rule (43) holds, then go to Step 5, otherwise go to next step.
Step 3. Cell Procedure 4 to vield Y,. If

Y;EX(

then call Procedure 3 and go to Step 1, otherwise go to Step 1.
Step 4 If the condition for splitting is fulfilled, terminate with outcome A, otherwise go to next step.
Step 5. The Procedure is terminated with outcome B.
Step 6. If (34) holds, go to Step 1, otherwise terminate with outcome C.

Now we are in a position to present the componentwise algorithm,

Algorithm 2

Steps 0-2. Same as in Algorithm 1,

Step 3. Call procedure §.

Step 4a. If Procedure 5 terminates in outcome B, proceed to step 5.
Steps 4b—6 are the same as in Algorithm 1.

The above two algorithms become impractical for large-size circuits because of the inversion of A%,
Algorithm 2 can, however, be readily adapted to encompass the case of large n. Indeed, by formulae (28)-(31),

Int. J. Circ. Theor. Appl., 26, 81-92 (1998} i 1998 John Wiley & Sons. Ltd.
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after the vector B has been evaluated, we only need the ith row C; of C = 4" to determine Y. Thus, C; can
be found by solving the linear system

(A}TC: =€ (44)
where the symbol T means transpose and e; is the ith column of the identity (n x n) matrix E. Indeed
(CA" =4 (O =E (45)

and (44} follows from (45).

For large-scale circuits, A is a rather sparse matrix and sparse matrix methods should be employed for
solving (44) in this case. Additional improvement is possible if one takes into account that according to (38)
A is perturbed at each iteration j by only a column vector A;. This perturbation can be written equivalently in
the form of dyad, ie.

A=a+a,7 (46)

where y is a column vector whose elements are zero except for its jth element which is equal to one. Then
a very efficient sparse matrix method'* which exploits the above dyad form perturbation can be made use of.

Remark 1. To avoid cluttering up the presentation of the present method with technical details, nothing has
been as yet said about the so-called clustering phenomenon characteristic of any interval method for solving
systems of non-linear equations. If clustering occurs this means that on exit the method generates around
each small box X3 containing a solution x* a certain number of boxed X5, X%, ... . X5 of the same width of
X°. However, unlike the box X%, the remaining boxes X* do not contain the solution x*. Clustering appears,
essentially, because the exclusion rule used is not capable of deleting small enough boxes around a sotution.
The clustering effect grows stronger as the problem dimension r increases. It has been observed with all the
known interval methods for global dc analysis. For one and the same problem, the clustering effect decreases
if the method used has better convergence towards a solution. As will be shown in the next section, the
clustering effect of the present method, if clustering ever appears, is much less pronounced in comparison
with other known methods.

In the previous methods™® 9 clustering was detected ‘manually’ by inspection of the solutions. In the
present method, simple procedure for detecting and deleting clustering has been incorporated in Algorithm
1 whenever Procedure 2 terminates in outcome C.

Remark 2. Finally, a remark regarding the interval arithmetic implementation of the present interval method
is to be made. Any interval method is to be implemented using appropriate interval arithmetic to ensure strict
enclosures of the numerical results obtained. The present method for solving (1) requires outward rounding
of all elementary arithmetic operations involved to guarantee that the intervals X5 obtained in Procedure 2,
outcome C will cover the exact solutions x°.

Outward rounding also ensures that no solution is ever lost in the process of reducing the size of the
current box X or when discarding altogether the whole box X. Thus, the use of interval arithmetic makes the
present method self-validating, guaranteering that all the operating points of the circuit investigated will be
infallibly located within the desired accuracy. It should, however, be borne in mind that interval arithmetic
operations are 56 times more expensive than the traditional floating-point arithmetic and require dedicated
software packages.

It should also be mentioned that the numerical validation of this paper's method for global non-linear
analysis can be implemented alternatively by a stochastic method'® without appealing to interval computa-
tions at all. However, unlike the interval implementation which yield interval results covering the exact
solutions with mathematical certainty the latter method only provides numerical results which have a certain
number of true significant bits within prescribed probability.

T 1998 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl., 16, B1-92 {1998)



90 L. V. KOLEV

4. ILLUSTRATIVE EXAMPLES

The numerical performance of the present method has been tested on several systems of equations of the form
(3) with n ranging from n = 3 to n = 10, using Algorithm 1. At this stage, all calculations are implemented
using traditional floating-point arithmetic operations. In all the cases, the CDF problem is solved. To
illustrate the improved numerical efficiency of the new method two examples will be given,

Example 1

The electric circuit studied contains a transistor and a diode (Example 6.2 in Reference 5). The description
(3} is in this case given by three equations with

@1(x;) = 107%@* — 1)
@3(xz) = 198 x 10~ (e85 — 1)
Palxa) = 107 %@ — 1)

— 06689 146722 — 06689
H=| —06622 — 13445 — 06622
—1 —1 —4

S = (80276, — 40535, 6)T
The problem is to find all the operating points of the circuit (the set S( £, X ®)); within the interval region
X® =([0,1}, [-5,0], [0, 1)

with ¢, = 0-01. The number of iterations needed by the present method to locate the only solution within X ©
with the desired accuracy is N, = 7.

To compare the efficiency of the new method (denoted as M6) with that of other interval methods (methods
M2-M35 from R.5), data about N; are given in Table L

Table 1

Method M2 M3 M4 M5 M6

N; 92 18 43 1% 7

It should also be mentioned that no clustering effect has been observed with this problem.

The superiority of the present method over the other known interval methods is much more pronounced
for problems of higher dimension, as illustrated in the following example.
Example 2

In this example, a circuit containing 10 tunnel diodes and studied in Reference 8 and 13 has a description
(3} of the form

Pulx) = 25x} — 105x2 — 10:5x% + 118x, i=1,....10
S=(-1, -2, -3,..., 10

it J. Cire. Thear. Appl. 26, 81-92 (1998) T 1998 John Wiley & Sons, Lid,
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Table I1

Method M1 M2 M3

N; 524143 116522 146

The interval X @ is defined by
x;e[—1,4], i=1,..,n

The accuracy &, has been chosen to be 1074,

Two interval methods were applied in Reference 8 to solve the CDF problem considered. The first method
denoted here as M1 is based on the use of interval derivatives slopes. The second method designated as M2 is
an improved version which uses interval siopes, This paper’s method denoted as M3 has also solved the
problem considered and has found within the same accuracy e, = 10~ * all the nine solutions contained in
X9 However, the data in Table Il concerning the number of iterations required to solve the GA problem for
the circuit studied reveal that the present method is vastly superiorer to the best interval methods known as
regards computer time.

On account of its fast convergence rate the new method has also improved characteristics as regards
memory volume requirements. Indeed, the maximum number of boxes n,, stored during computatien
reached the value of 6 for method M3 while n,, was manifold higher for M1 and M2. Also, the clustering effect
is now by far less pronounced. Thus, Algorithm 1 {without the procedure for deleting the clustering
mentioned in Remark 1) produced only a total of 13 solutions and it was very easy to locate the 4 duplicating
boxes. In contrast, among the two previous methods, even the better method M2 generated decades of
clustering boxes, thus requiring much bigger memory volume,

5. CONCLUSIONS

In this paper the problem of finding the set of all operating points of non-linear resistive circuits whose
equations are written in the separable form (5) is considered. The only assumption about the characteristics
of the non-linear elements involved is that they are modelled by continuous functions f;(x;). Thus, both the
CDF and PWL problems are encompassed by this paper’s problem statement.

A new interval method for solving the problem considered has been suggested which exploits to a much
higher extent than other known methods the separability property of the circuit equations. It is based on
a suitable approximation of the functions f;;(x;) by linear interval functions L;; defined by (6). Thus, at each
iteration of the method a single linear interval system (27) with a real matrix A is solved. This distinguishes
advantageously the present method from the other known interval methods where a much more complex
linear interval system having an interval matrix and a real right-hand side vector is solved.

Two algorithms for the numerical implementation of the method have been proposed. While Algorithm
1 is based on vector operations, Algorithm 2 is implemented using componentwise operations thus ensuring
a better rate of convergence.

The experimental data reveal that as regards computer time and memory volume requirements the present
method exceeds considerably the other known methods for solving the global analysis problem considered.
Its superiority becomes much more pronounced as the dimension # of the circuit equations system increases.

The present method can be extended to systems of algebraic equations of arbitrary form. This can be done
by transforming the original system into an equivalent separable form system using a method recently
suggested in Reference 16. Since the system thus obtained is, generally, much larger than the original system
such an approach should appeal to the sparse matrix version of Algorithm 2 herein suggested to ensure iis
numerical efficiency. Work is presently in progress to implement this scheme.

i 1998 John Wiley & Sons, Ltd. int. 4. Cire, Thear. Appl, 26, 81-92 (1998}
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APPENDIX
Proof of Theorem 1

If y € X is a solution to (20)in X, then f(3) = 0 and by the definition of A and 4" the inclusion (19) holds on
account of (18). Therefore, the following equality:

Ax+b'=0 (47)

defines a set of points S(X) which contains every solution y to (23) available in X. The interval equations (47)
is a short form of representing the system of equations:

Ax +b=0, beb (48)

Hence all solutions y to (20) are in the solution set of (48} which completes the proof.

Proaf of Theorem 2

The proof follows directly from obvious set-theoretical considerations. Indeed, as shown by Theorem 1 the
solutions y to (20) are in S(X). But at the same time they are in X. Hence all solutions y are also in the
intersection ${X)nX.
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