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USE OF INTERVAL SLOPES IN IMPLEMENTING AN INTERVAL METHOD FOR
GLOBAL NON-LINEAR DC CIRCUIT ANALYSIS

LUBOMIR V. KOLEVY AND VALER] M. MLADENOV
Department of Elecirical Engineering, Faculty of Automatica, Technical University of Sofia, 1756 Sofia, Bulgaria

INTRODUCTION

Interval methods (see Reference 1, §6.1 and references, cited therein as well as Reference 2) have proved a
reliable tool for global analysis of non-linear DC electric circuits (finding all DC operating points of the
circuit) as they provide infallible bounds on all the operating points. The earlier methods of this class had,
however, high computational complexity, especially for circuits of increased dimensionality.

Various attempts have been undertaken to improve the computational efficiency of the interval methods.
The best results—as regards both rate of convergence and memory volume requirements—have been
obtained when the circuit description is in the hybrid representation form. For this case an interval method
suggested in Reference 2 (a version of method no. 5 in §6.1 of Reference 1) proved to provide the fastest
rate of convergence among all known methods, having at the same time comparable memory storage. The
basic characteristic of this method is the use of interval derivatives. Indeed, let

P(x)= p(x)-Hx -s=0 (1a)
where 1: R"—R”" with

@)= @;(x;) (1b)
be the hybrid description of the circuit investigated, @;(x;) being continuously differentiable functions, i.e.
¢, € C'. The method is based on the following iterative procedure: !~
i—1 n
VP =x = DX @ ey ~ hx® =5, = 3 R X - S0 h X (22)
j=1

Jmi+l
X‘-(k+”=X‘-(“n Yi(k}’ k;o (Zb}

where £ is the iteration number, X is the ith component of the current box X®, while D,(X*') is the
interval extension of the derivative

40 = < g, - hx®] = gl - b, 3)
dx;

It is well known that combined with an appropriate partitioning algorithm of the current box X® and the
use of extended interval division' (see References 1 and 2 for technical details), procedure (2) guarantees
global convergence of the method considered even in the case where D,(X*) contains zero.

In this letter it is suggested to use interval slopes S,(X*} in (2a) instead of interval derivatives D, (X /%),
Theoretical considerations as well as numerical examples show that the new approach leads to a considerable
improvement in the numerical efficiency of the resultant modification of the method considered.
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INTERVAL SLOPES

Interval slopes were introduced in interval computations in 1985 in Reference 3 for the case of rational
functions in a single variable. Computation of interval slopes (in fact, of interval extensions of the slopes)
is based on recursive formulae (slope arithmetic). The original slope arithmetic® was extended to the
multivariate case in Reference 4 and subsequently generalized to functions containing irrational
components.*~’ Presently, only the rational part of the function is, however, treated by way of interval
slopes, while interval derivatives are used for the irrational components,

Interval slopes were used seermingly for the first time in non-linear DC analysis for the special case of
non-linear elements described by rational functions in Reference 8.

In this letter, the traditionat approach of using interval (first-order) slopes will be extended to cover the
irrational functions also. This will permit the analysis of such a typical class of non-linear DC circuits
containing transistors (and diodes) if the Ebers-Moll model of the transistors is used.

In order to generalize the interval slope to the case of irrational functions, we first need an explicit
expression for the non-interval (point) slope of a (rational or irrational) function f:DCRY, fE€C'(D). The
point slope of f is defined at x, z € D as?

={[ ) = f( (x, z}, + (4a)
T _{ T Y@ e (4b)

If f is rational, the traditional approach is to first determine the point slope f[x, z] explicitly as a rational
extension in x and z . Then an interval extension F[X, z]) of fix, z] is found with respect to x € X (where X
is an interval) and this is the interval slope of f. If f is irrational, the point slope does not have a finite
representation and the above approach is not applicable any more.?-?

To circumvent this difficulty, the following approach is suggested here. It is based on direct
determination of the range f[X, z] of the point slope, where

f[X,z]={f[x,z]:xEX) (5)

The new approach will be computationwise effective if the range f[X, z] can be determined with little
computational cost. It tuns out that this is the case for those functions f (irrational or rational) which are
either concave or convex in their domain D, For brevity the sets of these functions will be denoted by W,
and W, respectively, Additionally, let W= W, U W,. Examples of such functions are Vx for x20, exp(x),
In(x) , sin(x) for O€ x< 7 or for s x <2 » €tc. Indeed, if £ is concave in D( fe W}, it is easily seen that
forany X =[x, )€ D and any z € X distinct from x or % the interval slope § defined as

§=flX,z] (6)
is given by the simple formula

. [f(z) ~f(¥) Fx) ~f(z)J

Z-x X-z

X, z*X (7a)

If z=x or z= &, then the lower endpoint § or the upper endpoint § of S is to be calculated as

S=f'(x) (7b)
or
S=r% (7c)

respectively, ’
If f is convex in D( f€ W,), then simmlarly

. [f(f) /@) f(z)~f(z)

X-z I—-X

}, I#x, z®x (8a)
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while
§=f(®), z=3x (8b)
or
S=f(x), z=x (8¢)
If the component
fixd = @ix) - hyx, (%)

(where the superscript & is dropped for simplicity) in (3) belongs to W, then the corresponding interval
slopes §; over some interval X, can be most efficiently calculated by (7) or (8).
It should be stressed that

where D, is the extension of the interval derivative of (9) (which is the interval extension of (3)) and
usually the inclusion is strict. This in turn makes the interval ¥ in (2a) narrower, which speeds up the
convergence rate of the method if §,"' (X"} is used rather than D;"'(X,*). For this reason the new version
of the iterative procedure (2) makes use of the slope S, 1(X ),

If some component f, by (9) is not in W within the interval X, the simplest approach is to subdivide the
mterval X; into subintervals Xi»n7=1,2,..., m, such that f; € W for each X Examples show that most often
m =2 suffices. For instance, if f(x)=sin(x)and X = [—7/2, 7/2], then X should be divided into X, = [ x/
2.0]and X, = [0, =/2].

ILLUSTRATIVE EXAMPLES

Example 1

We consider the well-known circuit containing four transistors.’ The hybrid representation (la) is now
chosen of the form

exp(40x,) — 1 - 510075199, + 957262 1492x, - 77237-6032x, + 39152.7349x, - 712951924 = ¢
exp(40x,} -1 + 1087283-2583x, — 515509-9934x, + 164640-729x, — 83458-5044x, ~ 2671423.626 = 0
exp(40x;) -1 - 77237-6032x, + 39152-7349x, - 510075- 199, + 957262-1492.x, — 9096962857 ~ 0
exp(40x,) ~ 1 + 164640-729x, - 83458.5044x, + 1087283-2583x, - 515509-9934x, — 2252040.6554 = 0
(11
In this example the functions (9) are
filx) =exp(40x) -1 - hx, (12)

and obviously each f, W\. Thus the interval slopes were computed by (7a).
Usually *~7 the fixed point z, is the middle point of X,. This is, however, not necessarily the best choice,
For more flexibility z; was defined by the formula

L=x+a(f—x) (13)

where a is a suitably chosen constant ranging from zero to unity. Indeed, if o =0-5, then z, is the middle
point of X; for a =0 and & = 1 one gets obviously z, = x, and z, = X; respectively.,

For the example considered, it turned out that for an accuracy £=107" (¢ is the width of the box
enclosing a solution of (11)) the best rate of convergence of the modified method using interval slopes was
obtained for o = -8,
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To compare the numerical efficiency of the new method with other available interval methods, the
number N, of iterations needed to locate all nine solutions of (11) with precision 10~ are given in Table I.
The initial interval box is given by the intervais

XP=1-1-1,04], X{=(-504), XP=[-16,04], X?=[-4,0-4] (14)

The data for M1 (Krawczyk's method), M2 (the method from Reference 10) and M3 (the method from
Reference 2) are known.? The datum N, =75 corresponding to M4 stands for a slightly improved version
M3 using interval derivatives and two optimal points (called lower and upper poles). The new method
based on interval slopes is designated as MS5. It is seen that the use of interval slopes reduces considerably
the number ¥, of iterations as compared with the other interval methods based on interval derivatives.

Example 2

In this example a circuit containing 10 tunnel diodes and studied in Reference 11 has a description of the
form

P+ X F XTGP X F X F Xt X+ Xg+ X+ X, —1=0
@)+ X F X X X b Xt X F Xy + Xy + X —~2=0
@)+ X H X X X P X+ X+ X+ X+ X+ X, —-3=0
QX X X F X+ X+ Ay g+ X+ Xg+ X+ X0~ 4 =0

Ps(X )+ X+ X+ X+ Xy F X+ X+ Xg + Xg+ Xg+ X35—5=0

PelXey + X+ X+ X+ Xy + X5+ X+ X+ X+ X+ X0 —06=0 )

Gl + X+ X F X+ X+ X5+ X+ X+ X+ Xy + X o— 7 =0

PelXg) + X, F X+ X+ X+ s+ XgH Xp+ Xg+ Xg+ X0—8=0

PolXg) ¥ X, + X+ X+ X+ Xs+ Xg+ Xq+ Xg+ Xg+X0—9=0

@rolXol X+ X+ X+ X+ X+ X+ X+ Xg+ Xg+ X, — 10=0

where
@, (x)=2-5x}-10-5x + 11-8x,, i=1,2,...,10 (16)
The initial box X is defined by

xEf-1,4], i=1,2,...,10 (17

The accuracy & has been chosen to be 0-0001 and the parameter a in (13) determining the points z; for
computing interval slopes is now 0-2. Unlike in Example 1, the functions

filx)=@(x) +x, (18)

are not in W for all current intervals X, arising during the process of dynamically halving the interval box
X into subboxes X'*. Three cases are now possible. Let X,=1-4 be the inflection point of f,(x,). If
X, C [x, %], then, as is easily seen, f,€ W.; if X, € [§, ], then f,€ W, Finally, if X, € int X, (int stands for
interior), then f, is generally neither in W nor in W, or W, within X,

Table I. Numerical efficiency of the interval methods considered

Method M1 M2 M3 M4 M5

N, 207 143 79 75 46
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Table II. Solutions to system (15) for £ = 10~*

Solution X, X X3 X, X5 Xg X, Xy X, Xy

1 -0-2794 -0.2224 -0-1603 -0.0917 -0-0144 0-0751 O0-1836 0:3279 2-6232 2-7303
2 -0-2703 -0-2125 -0-1494 -0-0795 -0-0005 0-0915 1.7017 0-3581 0©-8213 2.7461
3 -0.2798 -0-2229 -0-1608 -0-0922 -0-0150 0-0744 2.2292 (-3266 (0-5902 2.7296
4 -0-2824 -0-2257 -0-1638 -0-0956 -0-0189 0-0698 0:1770 2-4725 0-5683 2.7251
5 02912 -0.2352 -0-1742 -0-1071 -0-0320 0-0545 20764 0-2919 1.0957 2.7091
6 —0-3355 -0-2829 -0-2261 -0-1644 -0-0962 —0.0195 0-0691 22030 24711 2-6156
7 -0.3200 -0-2662 -0-2081 -0-1446 -0-0741 0-0057 0-0989 1-6696 2-5204 2.6511
8 —0-3000 -0-2447 -0-1847 -0-1187 -0-0451 0-0392 0-1393 2.4100 1-1660 2-6922
9 -0.2748 -0-2174 -0-1548 -0-0855 -0-0073 0-0835 1.7396 0.3430 09220 2.7385

To get the most of the interval slopes as compared with the interval derivatives, the following approach
has been adopted for this example. The interval box X'” is preliminarily partitioned into 1024 subboxes X
by dividing each edge X” into two subintervals using the inflection point #; = 1-4 as the upper endpoint of
the first subinterval or as the lower endpoint of the second subinterval respectively. Then, as is easily seen,
Sfiis either in W, or in W, for any of the subintervals X*,

For this example two methods have been successively applied to each subbox X, v=1,2, ..., 1024, The
first method using interval derivatives (based on procedure (2)) and denoted as M6 required a total of
N, = 524,143 iterations for £ = 10* to locate infallibly all nine solutions of (15) available in the initial box
{17). The second method used was the new version M5 based on interval slopes. Now all nine solutions
were located within the same accuracy ¢ = 10" in a total of N, = 116,522 iterations, The solutions obtained
are given in Table II. Each component x/, i=1,...,10, s=1,...,9 {(where s is the number of the solution
point in R'® and ¢ is the co-ordinate number of each solution point), is the midpoint of the corresponding
solution interval X; whose width is less than or equal to ¢.

It is worthwhile mentioning that the methed from Reference 11 based on piecewise linear approximation
of (16) by subdividing each interval [—1,4] into 10 equally spaced segments locates only seven solutions
of (15) in the same initial box X® given by (17).

Finally, the following remark concerning the numerical efficiency of the new approach should be made. It
is to be stressed that, owing to (10}, the nse of interval slopes rather than interval derivatives guarantees a
better rate of convergence irrespective of the choice of z; and hence of ¢ € [0, 1] in (13). Our experimental
evidence has shown the validity of this assertion for various values of «. Initially, « was taken to be 0-5 (z;
being the middle point of the corresponding interval in this case), which led to considerable efficiency
improvement as compared with the other interval methods available. Afterwards, starting with a =0 and
incrementing it by 0-2 up to « = 1, the quasi-optimal values ¢ = 0-8 for Example 1 and a = 0-2 for Example
2 were found. It should be borne in mind that the additional amount of computation needed to determine
approximately the best choice for a will be compensated advantageously if the method is to be applied
repeatedly for the analysis or design of a class of non-linear devices having similar characteristics.

CONCLUSIONS

A new version of an interval method for global analysis of non-linear DC circuits described by its hybrid
representation has been suggested. The original method is based on the iterative procedure (2) making use
of the interval derivatives

D(X*). The new version appeals to the use of corresponding interval slopes §,(X'“).

Unlike other known forms of interval slopes, the interval slopes introduced in this letter are applicable to
irrational functions also. They provide the narrowest possible width for §,. Since §; C D, and the inclusion is
practically always strict, the use of the interval slopes improves substantially the numerical efficiency of the
modified interval method.
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Numerical examples involving systems of up to 10 non-linear equations and having up to nine solutions
show that the new version reduces the number of iterations needed to locate infallibly, within the accuracy
chosen, all the operating points of the circuits investigated.
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