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A Linear Programming Implementation of a
Interval Method for Global Non-Linear DC
Analysis
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tel.: ++359 2 636 2388; e-mail: valerim@vmei.acad.bg

Abstract

A modification of the previous author methed for
finding the sett of all operating points of non-linear
resistive circuits is suggested. The original meihod is
bascd on an approximation of every single variable
function (circuit equations are in a hybrid representation
form} by an appropriate linear interval function, i.e. by a
real linear function having an additive interval constant.
The improved approach uses linear programming
technique to update the current interval “box™ instead of
the eriginally used interval hull of the solution set of the
linearized tnterval system.

Numerical experiments show that the version suggested
reduces almost double the number of the iterations in
comparison with the original method for the examples
considered.

1. Introducdon
The following problem of global analysis of nonlinear
resislive L considered. Let

f:X'"” cR"——R" be the function describing the
dc operation of the circuit studied where n is the number
of equations and X"’ is the interval “box™ in R". Find,

with certainty, the set S(f, X" )= [xm,x(:’,.‘.,x”"}
of all real solutions x*” ,s=1,2,..., p of the system

fix)=0 (1)

xe X =(X", X%, X )

X.-[m =[I:m‘x:0}l. i=12,...,n 3y

and each component £ of fis in the so-called separable
form

circuits 15

where

ff=ifif(xj) )
i=l
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As il ts stressed in [1], the present problem stztement is
more general as compared with other publicaions (c.g.
[2]-[10]) in the following aspects:

i) unlike [2], [4]-(10] where special cases of (4} are
treated (hybrid representation form with f,(x)=0, ji, or
a special description {3} of circuits containing bipolar
and MOS transistors with f (x )=0 only for j=i and j=i+/
or j=i and j=i-/) now the full separable description (2}
15 considered,

i) the class of functions f(x) is more general whereas
all the previous papers (cf. [2)-[10} and their references)
admit only one function (most often £, {x )} of a special
lype.

in this paper, an improvement of the interval method
from [1] is suggested which is capable of handling the
general problem formulated above. The improvement is
based on application of linear programming techniques.
The paper is outlined as follows. In the Section 2 we
give a background of the method of {1} and present the
new ideas for improving the efficiency. In Section 3 we
give lwo examples and compare the results with the
original method {1} and we will end up with some
conclusions in Section 4.

2. The improved method
Let X=(X,,X,,...X,)be the “subbox™ processed at

the current iteration. Unlike previous interval methods
where interval derivalives [41, [5] or interval slopes [6],
{7] are used, in [1] each f(x) is approximaled in X, by
the following linear function

L(X,)=B, +a,x

[/

x_'.EXJ. (5)

where B, =[b. !Z] is an interval while a, is a real

[T
number. Both Bif and a, are determined such that the
following inclusion property holds [1}

0-7803-5008-1/98/$10.00©1998 TEEE.




{6)

A simple procedure for finding a, b, .E for the case

fu(xj)e .‘.i“.j+r1u.x}.,xj € )(j

of continucusly differentiable lunctions (see Fig. 1) is
suggested in [1]. The procedure is motivated hy
elementary geometrical considerations (see Fig. [) and
can be readily modified for the case of anly conlinuous
(in particular piccewise-linear or even discontinuous
functions.

Aﬁ}(xj)

A

A

Fig. 1. Geometrical illustration of the linear interval

approximation of f{x}in Xﬁ = xj,x_j .

After the parameters a; .b'.j E i, j= 1.2,....,n have been

determined a real matrix

A={-a,} M
and an interval vector B=(B, 8, ..., Bn) are formed
with

B, =B, =[b,. F] @)
j=1 -
On account of (4), (6), and (8)
fineax, +B,i=12..n xe X (9
i=!
or in vector form
fix)e-Ax+B,xe X (10)

If y is a solution of (1) in X, then f(y)=0 and by (10)

Oc-Ay+DB, yeX. Based on the above relations the

following theorems are stated in [1].

Theorem 1. All the solutions to system (1) contained

in X are also contained in the solution set of the system
-Ax+B=0,be B (11)

where b is any real vecior contained in B.
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Theorem 2. All the solutionsy 1o (1} in X are aivo
comtained in the intersection

P(X) = 8S(X)nX (12)
Let H(8,X) denote the interval hull of S{X). Then it
follows from {11) that
Y=H(E,X)=A"'B (13
and the Herative procedure for reduction the current
interval "box" X" is
X" =y®Ax¥ k20 (14)
where
Y('H =(A(k))'|Blil (]S}
and the real matrix A™} and the interval vector B™
comespond (o the current intervat “box™ X™'
Theorem 3 (Existence). Let :Dc R"— S R" be
a continuously differentiable finction in the domain D
and X' ¢ D. Introduce the interval operatar
KX™)=HE™, X" )= A™) " 3% k20 (16)
where A"} and B, correspond 1o the current box X*'
Then, if at some k-th iteration

K(xlk])gxl‘i] (I?)

the above inclusion implies the existence of a solution to
- i
(1) in X",

Theorcm 4 (Convergence). Suppose that

Kx")cx® (18)
holds for all k2k, i.e. that the iterative procedure (14)
converges to a solution X" and the Jacobian J(x') at the
solution is not singular. Then the convergence rate
towards X is superlinear.

Theorem 5 (Unigueness). If at some iteration &, of
the iterative procedure (14), the condition

K(X*' )y x™’ (19)
is satisfied and the real functions {(x} are all siricily
monaione f'nX:" , then:

. . . - . k
a) there is a unique solution x to (1) in X™*';

b) the modified procedure
x(l-ﬂ} = K(x[lﬂ )ﬁcll,lBlki \ k> k"

)

(20}

where C*' = (A™")" is a constant matrix white B
is computed as in Procedure 1 (given in {1]), converges
1o X" with superlinear rate.

The aim of our considerations is to lind out possibilities
to reduce the current subbox X™ more than using the
interval procedure (14), (15). Based on the special form
of (10) (A is a real matrix and B is an interval vector).

here we suggest to determine the lower and the upper

LE+1} k1

bounds x of the i-th component of X™"

through linear programming technique, namely




T

n .
Y —min(x,)

-A¥Mx+b=0 ”
bEB(I\) ( )

(L1}
xeX

and

LD
i

~A%x+b=0

[

=max(x,)

(22)
bheB :

1
xe X"

In detailed form (21) and (22) become

L+ ,
.1': M =min(x, )

-A

%) &
x<-b

(23)

K )
~A x2-b

(LY}
xeX

and
4 = max(x,)
A%y ®
_ (24)
~A%x2-b"Y

1]
xeX

Hence, the application of the new approach difters from
the original method [1] in using (21) and {22) for all
i=1.2,....n instead of (14) and (15).

Based on the these considerations, and Theorem 2 the
following corollaries can be proved.

Corollary 1. All the solutions to sysiem (1)
contained in X are also contained in the solution set
af (21} and (22) for i=1.2,....n.

Corollary 2. At each iteration k the new interval
vector X*"obtained from (21) and (22) for i=1,2,...n is
always narrower than the same one obtained from ( i4),
(15) of the original method [ 1].

Corollary 3. Iffor any i, there is no feasible
solution of (21), (22) then there is no solution y in the
current “box” X*.

Finally, it should be mentioned that using the suggested
approach more calculations are necessary. The amount
of calculations due to solving the lincar programming
problem usually is compensated with the reduced
number of iterations ensuring the prescribed accuracy.

A slight improvement of the linear programming

'_formulalion (21), {22) is possible. 1t is concerned with

introducing addilional constraints on cach x, connected
with the lower bound f, of f{x,) namely

a.x, +h Zf_r, i=12,..n

which makes the admissible region for each x, more
narrow. This improvement is expecled to reduce the
number of ilerations needed to solve the non-lincar
problem considered.

3, Numerical examples
The numerical performance of the present method has
becn tested on several systems of equaticns of the
hybrid representation form. To illustrate the almost
double reduction of the number of iterations «l the
improved mcthod needed 10 ensure the desired
accuracy, two examples are considered.
Example |
A circuit containing 10 tunncl diodes and studied in {7]
and [10] has a description of the form

fix) = p(x}-Hx-s5=0
with
@,(x,) = 2.5x) =105, +118x,,i=12...10

H=(h }. h=-1.ij=12,.,10
s=(-1-2...-10)

The initial box X™ is defined by
xe[-1,4), i=1,2,...,10
and the accuracy € has been chosen to be 107 .

Two interval methods were applied in {7] to solve the
giobal analysis problem considered. The first method
denoted here as M1 is based on the use of interval
derivatives while the second method designated as M2
employs interval slopes. Both the methods from f1]
denoted as M3 and the improved version presenied in
the paper and dencted as M4 have also solved the
problem considered and have found within the same
accuracy € = 10" all the 9 solutions contained in X",
The results reveal that the method from [1] and
especially the present modification are vastly superior to
the best interval methods known as regards number of
iterations.

Method M1 M2 M3 M4
N 524143 | 116522 167 96
Table 1. Number of iterations for different interval
methods.
Example 2

As a second example we consider the well known
circuit containing four transistors and studied in (4]-[7]



The hybrid representation is chosen in the form (cf.
formulae (11) in [6]), where the functions f(x,) are
Filx )= exp{40x,)~1,i=1,234
The nine solutions in the initial “box™ X"
xel-1.1, 04), x,[-5, 04), x,e[-1.6,0.4] x,g[-4, 0.4]

arc obtained using the method from {t] and the
suggested modification within accuracy € = 10", The
number of the necessary iterations for the method from
[1] is N=136 while the nccessary iterations for the
modified version is N=86.

In spite of the increased central processor time the
number of the iterations is reduces almost double. This
is very important when parallel computations are used.

4. Conclusions
A modified version of an interval method for global de
analysts has been suggested. The original method is
based on the itcrative procedure (14), (15) making use
of the new interval representation (6) of cach part of the
separable function f{x).i=1,2,...,n. The modified version
appeals to the use of lincar programming techniques to
update the current interval box.
Numerical examples using circuit equations in a hybrid
representation form (the functions fxhi=12, . .n are
separable) show that the new version reduces the
number of iterations needed to located all the operating
points within the accuracy chosen. In spite of the
increased central processor time the suggested approach
gives an approach how to rcduce the number of
iterations which is of great importance in parallel
computations.
Furthermore, the linear programming implementation of
the method from [1] may be superior to the original
version even in the case of classical sequential
computation if the computational efforts needed to
handle the non-linear functions ffx) are comparable
with the amount of computation associated with solving
the linear programming problems.
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