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Abstract—Interval methods are iterative methods that can be used to solve the general nonlinear pro-
gramming problem globally, providing exact bounds both on the optimum (optima) and on the corre-
sponding solution coordinates. However, their computational complexity grows rapidly with the dimen-
sion of the prablem and the size of the search demain, In this paper, a new interval approach to the global
optimization problem is suggested that makes it possible to develop interval optimization methods of
improved efficiency. It is based on the following ideas. First, every nonlinear function f; (x) involved in
the salution scheme chosen is transformed into a semiseparable form {sum of terms). Each term of this
form is either a function f(x,) of a single variable or the product x; x, of two variables. These terms are
then enclosed by corresponding linear interval functions. Thus, at each iteration of the computation pro-
cess, a specific linear interval system is obtained where only the right-hand side involves intervals,
whereas the known interval methods are based on a linear system with interval coefficients. The former
system is much easier to solve. which accounts for the high numerical efficiency of the new approach.

1. INTRODUCTION

Interval methods (see [1-3] and the references therein cited, as well as [4, Ch. 2], for technical applica-
tions) have proved to be reliabie as tools for solving globally the general nonlinear programming problem

minimize ¢gy(x) (1.1)

subject to @) €0, i= 1,2 ..r, @) =0,i=r + 1, ry, x€ XV = R™, or its variants (when some of
the constraints are missing). The methods are iterative, and the initial box X® is dynamically subdivided
tnto subboxes during the computation process. At each iteration, an attempt is made to reduce the size of,
or to discard altogether, the current box X by applying appropriate reduction—elimination procedures [2],
which depend on the problem at hand and the available information on the functions involved. If the con-
vexity test (requiring second-order derivatives of ¢,) is not used, the known reduction—elimination tech-
niques are based on the solution of a corresponding system, which censists (depending on the method cho-
sen for solving the minimization problem considered) of linear interval equalities and/or linear interval ine-
qualities. Each ith row of the system is, typically, of the form

> AL ~x)2bgx), i=1,2,..r, (1.2)
=1
where A,(X) is the interval extension of a corresponding first-order interval derivative (or slope) a{x) while
bi(x) is (in exact arithmetic) a real number, the symbol = stands for either equality or inequality sign, and #,
is the dimension of x (generally, higher than ng). System (1.2) is an interval approximation (in X) of the cor-
responding real system (see [2])
qJ,(x,,...,x,,])_—‘ZO, i=1,2 .., (1.2
{having the same number n; of variables and the same number r, of rows as system (1.2)].
Thus, the numerical efficiency of a specific first-order interval method for global optimization is essen-
tially determined by the following two factors:
(1) overestimation of A;(X) with respect to the range a;(X) of g;{x) in X;
(ii) overestimation of an approximate solution Y of system (1.2) with respect to its exact (optimal} sotu-
tion Y*.
Unfortunately, for larger ny and X', both overestimations are rather pronounced, especially at early iter-
ations, which accounts for the refatively low efficiency of the known global optimization interval methods.

! This article was submitied by the author in English.
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In this puper, a new approach to addressing the global optimization problem is suggested, which seems
to lead to interval methods of improved numerical efficiency. Starting, once again, from the real system
(1.2), it involves the following major stages.

1. Each nonlinear function y(x) in equation (1.2)' is transformed into a set of functions of the so-called
semiseparable form.

2. Each nonlinear term of each transformed function is enclosed in an optimal manner by a correspond-
ing linear interval expresston having a real (non-interval) slope.

3. A system of linear interval equatities and/or linear interval inequalities is thus obtained. Each ith row
of the latter system has the form

"

D (Xx;=B(X), i=1,2..,r, (1.3)
F=1
where, in contrast to system (1.2). all coefficients a;{X) ate now constants while only the right-hand side
term B,(X} is an interval; in the general case, n, > n, and r, > rs.
4. System (1.3) ts solved by an appropriate method.
Stages 2 to 4 are carried out repeatedly in the iteration process.

Thus, the basic difference between the new approach and the conventional interval methods lies in the
fact that system (1.2} is a system with interval coefficients, whereas system {1.3) has constant coefficients.
The latter system is much easier to solve [although the size of system (1.3) is larger than that of system (1.2)]
and the new approach is expected to have a better numerical efficiency.

The paper is organized as follows. The first three stages of the novel approach are presented in Section 2.
The last stage is considered in Section 3 for the case when (1.3) is a system of equations arising from the
application of the John conditions. Two constrained optimization problems illustrating the features of the
present approach are solved in Section 4. Finally, concluding remarks are given in Section 5.

2. BASIC APPROACH

According to the first stage of the present approach, the functions W, from sysiem (1.2} are to be trans-
formed into a semiseparable form. This form can be introduced in the most natural manner by first present-
ing the transformation of a function into separable form.

2.1. Trunsformation into Separable Form

It is well known that a function £ R —= R is separable (of separable form) if

HEOEIWFES)
i=t
where x, is the jth component of x. Typically, the functions y,(x}in (1.2)’ are not of separable form. However,
they can be transformed into a set of separabie functions

Fio = 3 e, i= 1,200, 2.1)
i=1
where n3 >n, and ry > r;. The functions y,(x) in equation (1.2)' are assumed to be factorable functions (51

L.e., functions that are composed of the arithmetic operations +, —, ., /, unary operations (sin. exp, log, sqrt,
etc.), and powers {A).

The theoretical basis for such a transformation is a famous theorem formnlated by Kolmogorov [6].
However, its proof is not constructive and only recently has a simple algorithm been proposed {7] to convert
fuctorable functions into separable functions automatically on a computer, Several basic facts from [7],
needed later on, are briefly presented here,

Let f, and f be subfunctions of y, containing at least one variable. Consider the following three cases:
f=Ffifo (2.2)
= Fi/fr (2.3)
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. .Jrn
f=fr (2.4)
If both f; and f, contain only one and the sume variable, then fis obvtously separable in all of the three
cases,
If f; contains only one variable and f; contains only another variable, then the functions from equation

(2.2) and equation (2.3} can be easily transformed into separable form as follows. The transformation of
{2.2}is

. . 2 . 2
F=fofe—Af=0i=Fi-fa) /2. 1= £+ fa). (2.5)
The second case is reduced to the first one by setting
fa=1/fg

‘and applying transformation (2.5).
In the third case, the transformation suggested in [7] is

fr 2
f= 0" —f = exp(y), ¥y = feolog(f). ¥ = [Vi- fr-log(f)/2 v, = fo+log(fy).(26)
It should be mentioned that transformation (2.6) is valid only if f; > 0 for all values of its argument.
[f both /; and fg contain more than one variable, then we first introduce auxiliary variables and then apply
the above approach. To illustrate this possibility, consider formula (2.2). In this case,
2o fe—=f =y [0y yi=fo = fa =ty QD)
To tllustrate the above approach, we consider the following example {see [2]).
Example 1. Minimize
Polx) = x| (2.8

subject to @,(x) = n: + xi -1€0. (%)= x:,! -x; 0.
If the normalized Lagrange multipliers method is used, the normalization condition for the multipliers is
o+t +ity = 1, (2.9

since all constraints in (2.8} are inequalities. After explicitly eliminating u,, the John conditions correspond-
ing to problem (2.8) can be written as

L=ty =y + 20 (0 + 1) = 0, 2x00, -0, = 0, w,0(x) = 0, .9,(x) = 0. (2.10)
In this instance, the solution scheme chosen (Lagrange multipliers method, John conditions, and explicit
eliminatton of one multiplier «,) leads to system (2.10), consisting of four equations in four variables. Let
X =0y, Yo, 1 i) and = {y.. ..., yy); then, (2.10) can be recast as

lp’,(x] =1 L e o z.f](xj\ +.".'4) = 0, \IJ‘_!_(.Y) = 2x2x_\ —Xy = 0,
Vilx) = Godx;, x) = 0, y(x) = X, x;) = 0.
and (2.1) corresponds to system (1.2)" in the special case when (1.2)" is a system for n unknowns,
y(x) = 0.
It is seen from (2.11) that each function w;(x) is not separable, although all functions @,(x) in the original

problem (2.8) are separable.
To transform (2.11) into a separable system, we first introduce

X5 = @ilx), £2), Xe = @ux, ) o= X+ (2.12)

(2.11)

to get the system
=% +2v0 =0, 2xx-x =0, xx =0, xux =0,
2 2 2 (2.13)
,'C|+x?_—|—~.‘(_q=0, ,t|—x2—x6=0, .t_‘+x4~x—;=0‘

Systemns of the above type. containing only products of at most two arguments us terms that have not yet
been transformed into separable form, are henceforth called systems of semiseparable form.

Next, we eliminate the products in the first four equations of system (2.13), using (2.5) to get the final
system of separable form

il

R LR B
l—xs+xi-x—-x3 =0, x+x-x=0, xj-x;-xi—x, =0,
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Xty -y = 0. xf[,—xi—,r_i =0, xy+xs-x,=0, .rf, —_r_';—x:', = 0, (2.14a)
F—x,; =0, .rf*xg— l—-xs =0, .tf+x2—xr, =0, x+x,-x =0.
Each x; (i = 1, ..., 11} in equations (2.14a) belongs to some interval X,. Indeed, it follows from the con-
straints in (2.8) that
neX, =[-L1), xwnelX,=[01]; (2.14b)
similarly, on account of (2.9) isee [2]),
neX;=[01], xe X, =[01]. (2.14c)

The remutning intervals X; (i > 4) can be easily found by using the corresponding relations (2.12), etc.

It is seen that, following the general scheme from [7], the separable system thus obtained consists of a
total of 11 equations, whereas the original system (2.8) contains only four equations.

2.2. Enclosures by Linear Interval Functions

Consider a term f(x;} of a function f; of separable form. No restrictions on these functions are imposed,
except that they are assumed to be continuous. In this subsection, a new interval enclosure of f(x,) on a
given interval X, will be suggested. Unlike previous methods, where the functions fi{x) are assumed to be
continuously differentiable (CD) and are approximated on X, by enclosures using interval derivatives {4, 8]
or interval siopes [9, 10], the new approximation is chosen in the following form:
where B, = [b,,. b 11is an interval while a; 13 a real number. Both B, and &, must be defined so that the
following inclusion holds:

filxye By+ayx, xeX,. (2.16)

f L

A procedure for finding a;. &, and b is suggested here for CD functions. Tt is motivated by elementary

geometrical considerations (Fig. 1a) and can be readily adapted for the case of functions that are only con-
tinuous (Fig, 1b).

Procedure 1. First, compuie
f,-f- = fu‘(-!_,-)s ffj = f:'_j(-f;')-
Then, «a; is defined as the slope
a; = (f,-,-—fl.!.)/(ij—.gj).

Afterwards, the equation
I " b
i) = Sits) = ay (2.17)

is solved on X; for x;. In the general case, (2.17) has several solutions. Among them, two solutions, denoted

by x; and x7 are chosen so that the following conditions are satisfied. Let
1(x)) = by +a,x;
be a straight line passing through the point (x}. £,(x})) and having a slope a; such that
Filx)shix), x;e X
Similarly, let the straighe line
Lix;) = E_;,.}-+ agx;
passing through the point (x; . f,{ x})) have the property
foilx) 2 5(x;), X; € X‘,-.
Now, it is easily seen that

b= fulx))—ayx;, by = fy(0)—aux]. (2.18)
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L)
) {a)

Fig. 1.

In the special case when £, (x)) is either convex or concave on X, equation (2.17) has a unique solution
x} . In this cases formulas (2.18) should be modified as follows. If f(x;) is convex, then set x; = x,; and

x; = x7 ;similarly, in the case of a concave function fifx), set x; = xf and x] = x;.
The efficiency of the above procedure primarily depends on how much computational effort is needed

to locate afl the real solutions to equation (2.17) within the interval X;. If this problem is easy to solve, then

Procedure 1 provides a simple and efficient way of determining the linear interval approximation (2.15).

Adding up all terms L,(X,) for a given index i, we obtain a linear enclosure for f(x) in (2.1)

L L3
LX) = ZL,.,.(X_,.) = Za,j(xj).rj-s,.()(), (2.19)
1= i=t
where
B(X) = -y By(X,). (2.20)
i=1
From {2.1), (2.15), (2.16). (2.19), and (2.20), it is clear that
filx) e LX) (2.21)
It is seen from (2.19) and ¢2.21) that, for the current box X = X, ..., X,,i ), the nonlinear system (1.2)' can

be represented by the linear interval separable system
> adX)x=B(X), i= 1,27 (2.22)
i=1
The above algorithm for transforming system (1.2)" into system (2.22), which leads to the full separable
form (2.1) and the linear interval expressions (2.15), is referred to as Algorithm t. Applying this algorithm
to system (2.17a), we get 11 linear interval equations of the form (2.22).

Remark 1. An alternative algorithm for constructing enclosing functions of the type (2.22) is suggested
it the next section. It is based on the transformation of the original system (1.2)' into a system of semisep-
arable form.

2.3, Alternative Algorithm
Consider the product
xy, xe X, yel, (2.23)
where X and Y are intervals. If x, and y, are the centers of X and ¥, respectively. then
Xy = (Xp+u)(Ya+ V) = XgYo+ Yol + XgV + UV = — XgVg + YoX + XpV + UV, (2.24)
When x € X and v € ¥, the centered variable # € R, and the centered variable v R,. where R, and R are
the radii of X and ¥, respectively. Define R = R R; it follows from (2.24) that
XE -ty +xgv+[-R,R], xe X, ye¥. (2.25)
COMPUTATIONAL MATHE.\rI:\T[CS AND MATHEMATICAL PHYSICS  Vol. 39 No. 5 1999
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Thus, the product xy is enclosed by an interval expression of separable form; i.e.,
xye ox+By+ B, (2.26)
where B, = -x,y, + |-R, R] is an interval.
The above technique is readily extended to products of the form

.r(o‘.(, + za!.x,.]. (2.27)
!

The procedure involving formulas (2.23) to (2.27) for enclosing the product in (2.23) or (2.27) by corre-
sponding linear interval expressions is referred to as Procedure 2.

As mentioned in Remark 1, an alternative approach to linear interval separability is possible, It is based
on the semiseparable form introduced in subsection 2.1 and the linear interval enclosures (determined by
Procedure 2) of the products of arguments involved in the semiseparable form. Thus, the following algo-
rithm (Algorithm 2) for transforming the original nonlinear functions y,(x) from system (1.2)' into linear
enclosures of the type (2.22) is suggested. First, the original system is transformed into a semiseparable
form using transformations (2.2) to (2.7). The terms f;(x;} are then approximated by linear interval expres-
sions {2.15), and the products (2.23) or (2.27) are enclosed by expressions of the form (2.26).

An appealing feature of the second algorithm is the fact that it converts semiseparable functions into lin-
ear interval enclosures of the type (2.22) without introducing new auxiliary variables and equations. Thus,
we finally obtain the system

"
> a Xy, zBLX), i=1,2..,7 (2.28)
r=1
which has the same structure as system (2.22). However, the size of system (2.28) is smaller than that of
(2.22) since, typically, both #. > »% and r, > ).

To tllustrate the second algorithm, we consider the following exampie,

Example 2. Consider the minimization problem considered in Example 1. Applying the new transfor-
mation scheme to this problem. we need to introduce only two auxiliary variables, x5 and x;, to get the
system

L—xs=x+2x(x+x) = 0, 2xx—xy =0, x5 =0,
. N (2.29)
0 =0, x+x-l-x=0, xj—x;—x, =0,
where the variables x,. v,, ... belong to the intervals in (2.14b), (2.14c), etc. Now. enclosing the products in

the first four equations and the nonlinear functions xf and .ri in the last two equations of the system by
appropriate approximations. the following system of linear intervai equations is finally obtained from
(2.29):

l — Xy —'.t4+(f]|.t| +a]_;.‘|.-_: +(I|4x_; = BI‘ anx2+a23.t3—x4 = BE‘ d33X3 +a;45x5 = B (’) 30)
ApXy+agxy = By dasx +agx,—1—x5 = By, agx,—x;—x, = B, B
where only the terms B; on the right-hand side are intervals. [In the example considered, system (2.30) cor-
responds to the general system (2.28). To simplify notation, the dependence of a; and B, on the current box
X is not explicitly indicated in (2.30). It should however be stressed that system (2.30) must be solved at
each iteration of the computation process (for each box X).]

Enclosing in the known manner the nonlinear functions in system (2.14a) by linear interval expressions,
we get a system of the same kind as system (2.30). However, system (2.30) consists of only six equations,
while the system corresponding to {2.14a) involves 1 equations. Thus, as illustrated by the present exam-
ple, the application of Algrorithm 2 leads to a smaller system of equations and therefore seems to be pref-
erable as compared to Algorithm 1.

3. SOLVING SYSTEMS OF EQUATIONS

In this section, the last stage of the new approach is considered in the special case when the system (1.2)
employed to solve the corresponding optimization problem (1.1) is a system of n, nonlinear equations in #,
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variables. It will be pointed out at the end of the section that the present approach can be easily extended to
systems of the general type consisting of both equalities and inequalities.

Let the system of semiseparable form corresponding to the original system (1.2) be
filx) =0, i=12 .,n xeXcR" (3.1)

where # stands for 7, and X is any subbox of the initial box X'%. Applying Algorithm 2, we obtain the inclu-
sions

i

flxye Za,:,-x +B., xeX, i=12..,n,

or, in vector form,

fix)e —Ax+ B, xe X, {3.2a)
where the matrix A is chosen. for convenience, in the form
A= {—af;'}- (3.2b)

I y is a solution to system (3.1} in X, then Ay) = 0 and, by (3.2),
Oe-Ay+B, yve X.

Now, the following results can be easily proved.

Theorem 1. All solutions v to

fHx} =0, (3.3)
contuined in X are also contained in the solution set S(X) of the system
Ax = b, be B, (3.4)

where b is anvy real vector comained in B.

Since B 1s an interval vector, the set S(X) is a convex polyhedron. Indeed, (3.4) is in fact a system of
n linear equalities and 2# linear inequalities.

Theorem 2. All solutions v to (3.3} in X are also contained in the intersection
P(X) =8(X)nX. (3.5
Since S(X) and X are convex polyhedra, it is seen from (3.5) that P(X) is also a convex poiyvhedron.
Corollary 1. If P(X) is empty. i.e., if
S(X)NX =0,
then system (3.3) has no solution in X.

Let H(P., X) denote the interval hull of S(X), that is, the smallest interval vector (box) containing P(X).
By applying Theorem 2 and Corollary 1, an iterative method for finding aH real selutions to (3.3) in an initial
box X' could be designed. Such an approach would, however. require 2» linear programming problems to
be solved at each iteration to determine the corresponding hull H(P, X). Unless implemented by parallei
computation, this would be a rather time-consuming iteration. Therefore, a simpler method s suggested
here. It is based on the determination of the interval hull H(S, X} of $(X), Theorem | and the following Cor-
ollary 2.

Corollary 2. If
H(S$, X)nX = O,
then system (3.3} has ne selution in X.
It follows from (3.4) that if matrix A is not singular, then
H(S.X) = A7'B.
Let C=A""and ¥ = H(S, X). It is seen from (3.4) that the components ¥, = [v,. ¥;] of Y are given by the
formulas i

o= v (3.6)

=1
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where
i {“ﬂ"-’r' e (3.7)
- c,-}-f_;;, ¢, <0, N
=Yy, (3.8)
i=
with
5 =GP €20, (3.9)
- Cybp €<, -

In the case when A 1s singular in the current box X, X is split along its widest side into two boxes, and
each new box is processed separately by using Procedures 1 and 2.

Now, a new interval method for locating all real solutions of the system
flx) =0 (3.10a)
contained in X'V ie., when

xre XY (3.10b)
ts suggested. It is based on the following procedure.
Procedure 3. Let X be a current box. Using Procedures 1 and 2, determine C*© and B® corresponding
to X¥. By formulas (3.6) to (3.9). compute ¥®, The iterative procedure is then defined as follows:
XETD o p® e x® k20, (3.11)
The procedure may result in three outcomes.

A. The sequence X“* 1 converges to a solution x' as & increases. Actuatly, the iterations are stopped
whenever the width of X' * !"becomes smaller than a constant €, (which prescribes the accuracy with respect
to x). Now ' 15 approximated by the center x° of X** ! and x* is substituted in (3.10a). If

tol = max[[f,-(xu)

{€, defines the accuracy of x* with respect to the system of equations), then the iterations are resumed; oth-
erwise, 1° is accepted as a solution to {54).
B. At some &,

,l‘= ], 2,..., .’EI}E:

YA x® < @
It follows from Corellary 2 that system (3.10a) has no solution in X*'. In this case, X% is discarded from
further consideration.

C. The sequence X' * ! converges to a fixed interval (box) X*. In practice, the procedure is stopped when-
ever the reduction in the volume of the current box X** ", as compared to that of the preceding box X**, is
smaller than a constant £;. In this case, X** 1 is split along its widest side into two (left and right) boxes, Xt
and X*. The right box is stored in a list L for further processing. The left box is renamed X', and the iterative
procedure (3.11} is resumed.

Remark 2. For large-scale problems, A is a rather sparse matrix, and the inversion of A is then, obvi-

ously, numerically inefficient. In this case, the vector Y should be determined in an equivalent component-
wise manner, which leads to finding successively the solution of 7 systems

A = €, (3.12)
where ¢! is the ith column of the 1 X » identity matrix. Sparse-matrix methods should be employed for solv-
ing system {3.12) in this case.

Remark 3. It should be pointed out that the approach suggested in this paper can be used to construct
methods designed te solve (in the sense of [2]) systems of nonlinear inequalities or mixed systems consist-

ing of both equalities and inequalities. Indeed, solving such a system reduces to solving simultaneously a
system of linear interval equalities

Ax = B, (3.13a)

, COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol 39 No. 5 1999
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and a system of linear interval inequalities
A x €8, (3.13b)

where only B| and B, are interval vectors.
Several methods for tackling problem (3.13) have been suggested in [2] for the general case when A, and

A, are interval matrices. The fact that A, and A, are now real matrices can be advantageously exploited to
simplify the known methods from 2} or to design new methods for solving (3.13).

4. NUMERICAL EXAMPLES

The numericai performance of the method suggested in Section 3 was tested on several systems of
equations whose size n ranged from 2 to 20. It is illustrated here by three examples, solved on a
‘Pentium 120-MHz computer.

; Example 3. In this example. we consider the following system of ten nonlinear equations of separable
orm

flx) =p{x)-Hx-5s =0 (4.1a)
with
®(x) = 2.5x, - 10.5x + 118x;, i=1,..,10, H = {h;} with h;; = —1, 5 = (-|,...,-10). (4.1b)
The initial box X" is defined by

x.e[-1,4], i=1,2,..,n {4.2}

The value of €, was set equal to 10~*. We seek all real solutions to system (4.1 contained in the initial
box {4.2).

Two interval methods were applied in [8] to solve the problem considered. The first method. here
referred to as M1, is based on the use of interval derivatives, while the second method, M2, employs interval
slopes (see [9, 10]). The present method, denoted by M3, was also used to solve the problem considered and
find €, = 10~ all of the nine solutions contained in X up to the same 1. Data concerning the numerical
etficiency of the three methods are shown in Table 1, where N, stands for the number of iterations required
to globally solve system (4.1). (4.2); ¢ 1s the execution time (in seconds); and #,, is the maximum number of
boxes stored during the computation in the list L:

Method M1 M2 M3
N, 524143 116522 146
s 482 121 0.503
", 525 93 3

These data reveal that the present method is vastly superior to the other two {rather sophisticated) interval
methods as regards computing time. On account of its fast convergence rate, the new method also has
improved characteristics in terms of memory requirements. It should also be stressed that no cluster effect
{11] has been observed in solving the present example by M3. In contrast, among the two previous methods,
even the better method M2 generuted 24 solution boxes instead of 9 as in method M3,

Example 4. In this example. we consider optimization problem (2.8). To solve it globally, we invoke
Algorithm 2; i.e., method M3 is applied to semiseparable systemn (2.29) to find all of its solutions contained
in the initial box X' with components

X ={-L1I. X,={0.1]. X,=1[01]. X, =1[0,1], Xs=1[-1,0]. X, =1[-1,0]. (4.3
The value of £, was set equal to 1075, The following unigue solution has thus been found:

x* = (-0.7861, 0.6180, 0.1739, 0.2149. 0, 0), (4.4}

where each component x;* of x* recorded to four decimal places is the midpoint of a corresponding interval

X} . The global minimum @ in minimization problem (2.8} is approximated by t} and is guaranteed to
be enciosed by the interval X7 :ie.,

@y € [-0.7861513783, -0.7861513769].
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System (2.29), (4.3) has also been solved by Krawczyk’s method [2], denoted by M4 (in fact, a more
efficient componentwise version of the method was used). Data on the number of iterations and computer
time required by methods M3 and M4 are presented here.

Method M4 M3
N 993 20
05 0.914 0.018

Remark 4. The above example has also been solved by Algorithm 1, i.e., by globally solving the fully
separable system (2.14). Applying method M3 to (2.14), one finds, once again, a unique solution x* (having
11 entries), whose first six components are the same as in (4.4), It s, however, worth mentioning that the

number N, of iterations required to locate x* is now larger than N, by approximately an order of magnitude
{N;=193). The computing time corresponding to N is £ =0.151 s, which confirms the superiority of Algo-
rithm 2 over Algorithm 1.

Example 5. We consider the following optimization problem (see [2, p. 177}): minimize

Qplx) = x5 - 6.3xf + I2xf +6x,0,+ 6x,
subject to @\(x) = 1 - [6x7~25x3 €0, @y0) = 13x - 145, +85x; - 400 <0, y(x) = x,x, - 400 < 0,
Application of the John conditions leads to the following system of six nonlinear equations;
X3(6x] =25 2x] + 24, + 6x,) — 320,24 + x5(39x] - 145) + x,x, = 0,
£(6% +120:) - 5000, + 85x5 + x,x5 = 0, x,(16x7 4 25,2~ 1) = 0, (4.5a)

To(13.0) - 1455, + 85, - 400) = 0, X6(51x=4) = 0. X3+ x+x a1 = 0,
where the variables x,, x,, Y. and x, correspond to the normalized Lagrange muitipliers Uy, 1y, U, and u,,
respectively,
In this example, the problem is to globally solve system (4.5a) in the following initial region X:
X7 = x¥ =24, X9 =101}, i-= 3,...,6. (4.5b)

Problem (4.5) was solved by methods M3 and M4. It has 9 solutions (recorded in the same way as in Exam-
ple 4);

M=o 7475, 0.8738, 1.000, 0.0000, 0.0000, 0.0000),

X = 0705, 0.5353, 1.000, 0.0000, 0.0000, 0.0000),

Y= (~0.2398, —0.05648, 0.5716, 0.4284, 0.000, 0.0000),

= (-0.06604, ~0.1929, 0.8341, 0. 1659, 0.000, 00000},

= -0.2398, 0.05648, 0.5716, 0.4284, 0.0000, 0.0000),
b (-0.0000, 0.00C0, 1.000, 0.0000, 0.0000, 0.0000),
7' = (~0.06604, 0.1929, 0.8341, 0.1659, 0.0000, 0.0000),
A = (1.0705, ~0.5353, 1.0000, 0.0000, 0.0000, 0.0000),
¥%'= (1.7475, -0.8738, 1.0000, 0.0000, 0.0000, 0.0000).

Data on ¥; and ¢ related to M4 and M3 are presented

X

Method M4 M3
N, 33089 3233
s 88.381 9.816

Once again, the new method is much faster than M4,

5. CONCLUSIONS

In this paper, the general nonlinear programming problem (or its variants) is addressed. A new interval
appreach to the global solution of the problem considered has been suggested. It is based on the following
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underlying ideas. The nonlinear system ( 1.2) (used to solve the original optimization problem) is first trans-
formed into a larger system of semiseparable form. Each term of the latter system is either a nonlinear func-
tion f,(x;) of a single variable or a product x, x; of two variables. The semiseparable system is then enclosed
by a corresponding linear interval system (2.28), using enclosures (2.15) and (2.26) for fi(x) and x.x,
respectively. System (2.28), involving in the general case both equalities and inequalities, is then solved
repeatedly (at each iteration) by an appropriate method.

An appealing feature of the new approach is the fact that only the night-hand side of system (2.28) is an
interval vector, while the previous interval methods lead to linear interval systems where only the right-hand
side is a real vector. The former type of system is much easier to solve, and, therefore, the new approach is
expected to improve numerical efficiency. Another advantage is the fact that it can be directly applied to
problems involving nondifferentiable functions in the objective function and/or constraints while the known
interval first-order methods require a preliminary transformation of the initial problem into an equivalent
- problem of larger size, so that the new objective function and constraints have the desired smoothness
[2, Ch. 14].

In the special case when (1.2)' is a system of n nonlinear equations in n variables. the novel approach has
been applied in Section 3 to design a new interval method for solving such systems. The numerical results
obtained so far and illustrated by Examples 3 to 5 show that the new method is considerably superior to
other known interval methods for problems of larger size » and wider interval region X'? in the case when
equations (2.17) are not difficult to solve.

The novel approach to global optimization has been illustrated by Examples 4 and 5 in the case when
the John conditions are used to obtain a corresponding nonlinear system of equations. The system has been
solved by the method developed in Section 3, It should however be bome in mind that many alternative solu-
tion schemes (other than that of the John conditions) are possible. The application of the new interval
approach to these alternative schemes and the development of corresponding interval methods for global
optimization seems to be a promising area for future research.
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