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A general interval method for tolerance analysis

Lubomir Kolev, Ivo Nenov

Abstract - In this paper, an interval method for tolerance
analysis of electric circuits is proposed. It is rather general
and can be applied to solving tolerance problems both for
linear and nonlinear circuits, The problems to be solved can
be either of the deterministic, worst-case type (with
independent or dependent parameters) or of the probabilistic
type {when there are statistical dependencies between the
parameters). Under 2 computationally verifiable condition,
the method suggested guarantees to yield an interval solution
that encloses the actual set of solutions te the specific tolerance
problem considered. Numerical examgples related to the worst-
case tolerance problem for nonlinear dc circuits seem o
indicate that the present method has attractive
computational performance.

Index Terms - Tolerance analysis, interval analysis.

[. INTRODUCTION

NTERVAL methods for solving various types of

electric circuit tolerance analysis problems have been
in existence for over twenty years [1]-[9]. The major part
arneng these treats the worst-case (deterministic) telerance
problem for linear circuits. The linear tolerance problem in
probabilistic setting is considered in [5], § 2.5. Papers [7]
and [8] address the worstcase tolerance problem for
nonlinear clectric circuits. The known methods, however,
differ considerably from one anather depending on the class
of circuits analyzed (linear or nonlinear), type of problem to
be solved (in deterministic or probabilistic serting) and the
type of problem formulation used {as a global constrained
optimization problem or in the form of an interval lincar or
nonlinear system of equations).

In this paper, a general interval method for solving any
of the known tolerance analysis problems for beth linear
and nonlinear circuits is suggested. It is based on a
medification and generalization of a methed propesed
recently in [8]. Unlike [8] where the nonlinear worst-case
tolerance problem was analyzed, now the system of
equations describing the tolerance preblem considered is in
rather a general form

Sflx,p)=0 (1a)
PE P (1b)
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where f a nadimensional vector functiom, x is a »-
dimensional output variable vector, p ts a m-dimensional
parameter vector and p is the comesponding interval
vector (box). It is assumed that a pair (x°,p")
corresponding to the nominal solution is known such that
S(x°, p®)=0 with p®€ p; p° is usually the center
of p.
The solution set §,(p) of (1) is the set

S,(p)y={x:f(x,p)=0, pe p} @
The interval hull of S,(p) will be denoted X *; any

other interval X such that x* C x will be referred to as
an interval {outer) bound on S, (p). In the present paper,
the tolerance problem considered is equated to finding a
bound x on § s - A method for computing x 1s suggested
which is based on an alternative linear interval enclosure of
non-linear functions in a given box [10] - [12].

To simplify presentation, it is henceforth assumed that n'

= p (number of equations equals number of output
varizbles).

I1. PRESENTATION OF THE METHOD

It is known that a continuous function g {=;, ..., 5y) can
be enclosed in a box ; by the following affine linear interval
function

Lx(:)=ia1':j +b 3
j-l

(@; are real numbers and & is an interval) having the

property

g(z)e L, (z), zez (4

Simiiar formulae are valid when g is an r-dimensional

function. Now

L (z)=Az+b, zez %)
(A is a real matrix and & is an interval vector) and for the
new notation, property (4) is also vaiid. Constructive
procedures for determining 4 and & are suggested in [10]-
[12]. On account of (5) the linear interval enclosure of (1)
in the box z = (x, p) will be

Le(x p)=Ax+ A’ p+bxex ,pep (6)
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In this section, a method for determining an outer bound
x on the solution set S, (p} of (1) is presented. It consists

of two stages: during the first stage, a “good” starting box
x' is determined; the second stage aims at improving x* by
making it narrower.

Stage 1. Let po be the center of p. First, the nominal
solution x° is found by solving f(x,p°)=0. Next a

narrow box x® of width £, centered at x° is introduced
and, using(6), system (1) is enclosed in z° by the linear
interval form

Lf(xo,p):-A;X+A;p+b0 (7a)

xex’, pep (7h)
Now, (7a) will be used as a linear approximation of (1) in a
larger box ' = (x' , p). Following [10] - [12] the

component x' of z'is determined in the following way

x'=—(45)" b, (8a)
where
by=Aflp+b, (8b)

The first stage can be implemented in two different ways
using the following two procedures.

Procedure 1. It is initiated by jutting x°= x' and going back
to (7).

Procedure 2. It starts as Procedure ! by computing x'
using (8). At this point, x' is renamed x’and the newx' is
found by the ynion

x'=x'ux® . (8¢)
Next the iterations continue (as in the previous procedure)
from (7) with x°=x'.

It is assumed that Procedure | (Procedure 2) converges
10 a stationary interval vector (box) x° .

In practice, the respective procedure terminates
whenever the distance between two successive iterations x'
and x* becomes smaller than an accuracy E,. This
approximate stationary box denoted as x* differs, in
general, from x' and may be smailer. Therefore, x* is
constructed in the following way

x' =x?+(1+£&,)[-R,R] 9)
where R is the radius of x* and e, 0.

Stage 2. After the box x* has been determined by (9)
we proceed to the second stage of the present method. Now
we wy to reduce x* using the following procedure.

Procedure 3. Let % = x' and construct the
corresponding linear approximation of f(z, p) in (x°, p)
using (7). By (8) find the corresponding box x*and denote
itx'. Next,anew box x' is introduced by the intersection

'=x'nx’ (10)
As before, the iterative process is initiated by putting x° =
x' and going back to (7). It is terminated when the distance
between two successive boxes becomes smaller than an
accuracy €;. The corresponding stationary box denoted x
is, in fact, the outer solution of the corresponding tolerance
problem described by (1).

The distance used in the stopping criterion in Procedurss
1 to 3 has been chosen as

d=max{jw(xj)|—|w(xf[} an
where w stands for width,
The second stage of the present method permits to

computationally test its validity. Indeed, let x™ be the box
obtained at the & th iteration of Procedure 3. If the condition

x'* < int(x*) (12a)
(int denoting interior) is fulfilled for some k 2 1, then
L ]
5 fEX Ccx {12b)

L. the outer solution thus found contains S; and its interval
hull, The proof of (12} (along with other theorerical aspects
of this paper’s method) will be pubiished elsewhere.

[t is seen that the method sugpested above can be
implemented as:

a) algorithm Al which is based on Procedures 1 and 3;

b) algonthm A2 which uses Procedures 2 and 3.

Experimental evidence seems to indicate that algorithm
A2 requires less iterations than algorithm Al to solve the
tolerance analysis problems considered.

It should be noted that besides being more gencral, the
present method differs from the method of {8] also in the
way each iteration of Procedures | to 3 is carried our. In [8]
this is done by approximately solving a linear interval
system where all its clements are interval. The
correspending linear interval system in the new method is
much simpler (only the right-hand side is interval) whose
exact solution (within round-off crrors) is computed by (8).
This explains the better computational efficiency of the
present method which is confirmed by the examples
considered in the next section.

III. NUMERICAL EXAMPLES

In this section, two worst-case tolerance examples
illustrating the applicability and efficiency of the present
method are given. The examples have been solved using
algorithms Al and A2. The algorithms were programmed
using the algorithmic language C™. The linear interval
enclosures (7) were generated automatically by a procedure
that implements the approach suggested in [12].

Example 1. In this example, the system of equations
(1) is:

10%(&™ —1)+ p x, 1672, +0.668%, ~80267=0

3
198109 (¢ "2 ~1+0.6622) + pyxy +0662%; +4053520

107 (% ~L}+x; —x3 + pyxy —6=0

(13a)

p=(py. Py. p3)e ([0.6020,0.7358], (13b)
[1.2110, 1.4801], [3.6, 4.4])

and models a dc electric circuit containing a transistor, a
diode and two resistors [9]. We consider the worst-case
tolerance problem associated with (13): find an interval
(outer) solution x to (13). In this example, the output vector
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15 X = (¥, X3 X3} and the parameter vector is p=(p. p;, gy = Viy — Vi3 (18b)
p3). We chose p0 as the center of p given in (13b). The and a diode characteristic
comresponding nominal solution x* was found with iy = 10"9(e3s“ —l) {19a)
accuracy € = 10 ™ using a new nonlinear equations solver with
(implementing ideas from [11] and [12]): U=V te —v (19b)
x® =(0.5555, -3.518, 0.4685) (14) S TTsTe . _ s 420
. . . All the remaining inear resistors have a o
Sl:i::}suks in (1) are, bowever. given only to four decimal tolerance, i.¢. their values lie within the interval [98, 102]
* Application of algorithms Al and A2 with gg=¢, = g, = £ and deﬁn;l the pla;amctcrmb:;r‘:. Ti'lhc com;:so_nlcn‘lzs of t111;
10 = vyielded the following results, respectively, for the ou;p:: vang c"l':: ”gc 13 HCIGCT?.' i ’"".:_l
intervalsolution of the tolerance problem considered: and the node volages v1Z, v13,..., vib, Again, We consicer
x=([0.5401 0.5682], [-3.8926 —3.1153] the worst—case tole_rancc analysis problem associated with
' " - ’ (15)  this modified circuit.
[0.3483 0.5387) A numerical difficuity arose in finding the nominal
solution x° for this example. It is due to the well-known
x =([0.5402 0.5680] [-3.8910 —3.1194), overflow problem caused by the exponential diode
(16) nonlinearity. The overflow was overcome by scaling all
[0.3473 0.5331] variables by a factor of 0.01. Afterwards x° was found
Fer algorithm Al, € ;= 0.05 and the fulfiliment of (12a)  successfully with accuracy € = 10 ~° using the new
was achieved at k=1 of Procedure 3. For zlgorithm A2 nonlinear equations solver. The initial box x°, where x° was
we chose €, =0 and nevertheless (12a) was satisfied  searched for, was chosen pretty wide: currents were set
already at & =2 of Procedure 3. Thus, both bourds (15)  between (-1) and 1 A and node voltages between 1 and
and (16) are guaranteed to contain the solution set of (13). 100 V. A unigue nominal solution is:
where
TABLE 1
Algorithm | Algorithm 2
Stage | Stage 2 Total Srage ! Stage 2 Total
M 27 8 - 35 13 7 20
The numbers of iterations r yrresponding 1o the two 0 _ 037 39] N
algorithms are listed in Table 1. It is seen that algorithm A2 * (0.376, 0. 0.016, 0272,
requires less iterations as compared to algorithm Al. 0.136, 0.360, -0.070, 0.337, 0.097, (20)
The same example was solved ia [8] by an algorithm 0.167, 0.263, 62.36, 60.88, 33.72,
similar in structure 1o algorithm A2 {(however, as mentioned 16.69, 26.35)
in the previous scction, each iteration of both the first and ) 5 . o .
sccond stage of the algorithm is associated with the solution :\'.?aslu:::f:;:dinait}f: s:)‘::aliszlmer?:r:iiz::g tc?r‘\?:lg f cqua[ulc;;
of a corresponding linear interval system and requires more we tenort tion. not s%c 1 t_n . form 1
computation than algorithm A2). The following bound was (we Feport equarion, not system cvalua 101S Since not a
obtained cquations may be required per iteration). Using algerithm
x=([0.5103, 0.5778], (4352, -2 6756] Al, the interval (outer) solution around the nominal
’ T ’ [0 3485‘ 65898])‘ (17 solution x° was computed after 7 unions (stage 1) and 4
: M : 1 1 - = - -5 =
It is to be stressed that the bound (17) is more }rrzltlcrslcrg:onsd{st_age 2,) fo‘;eg_ hEI 3’ ,10 r al}dﬂslz 0.05.
conservative as compared to {13) and (16) and ar the same N bcl endpoint x anb Tg t endpoint x= of the output
time takes more iterations to be reached: total number of ~ Y3T1abie vectorare given below:
?tcrations 166 (85 iterations for the first siage and 81 xl = (0366, 0380, 0.07, 0.260, 0.123,
Merations for sccond stage). 0350, -0.079, 0327, 0.089, 0159, (21)
Example 2. This example is a modification of Example 0.254, 6136, 59.84, 3293, 1597, 2548)
3.2in [5). The linear dc circuit of [3] is transformed into a
npnIincar circuit by replacing the linear resistors ry and r; in x' = (0.388, 0404, 0.027, 0.27%, 0.157,
::cgl;ji.clciif‘zi:;F:tizonl:ncar elements having respectively: 0.369, —0.063, 0.350, 0.104, 0.176, 22)
0.273, 63.28, 61.70, 34.74, 17.48, 27.22)
i =107 (25u% 10542 +11.8%) (18a) where as in (20) only four digits for each component are
given,
381




IV, CONCLUSION

An interval] method for tackling various classes of
tolerance analysis problems (lincar and nonlinear,
deterministic with independent or dependent parameters,
probabilistic) has been suggested. The method is rather
general in its approach and equates the original tolerance
problem to that of finding an outer interval solution x to the
nonlinear system of equations (1} describing the tolerance
problem considered. It is based on a recently suggested
linear interval enclosure (5). If the computationally
verifiable condition ([2a) is satisfied, the method
guarantees that the obtained solution x is really an outer
solution, i.e. the inclusion (12b) is fulfilled.

A computer program implementing the method has been
developed in a C™ environment. The numerical results
obtained so far (including data not reported here) seem
rather encouraging.
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