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Abstract, This paper presents an iterative method for computing an outer interval bound on the solu-
tion set of parumeters-dependent systems of non-lineur equations for the case where the parameters
luke on their valugs within preset intervals. The method is based on a recently suggesied allernative
lincar interval enclosure of factorable non-linear functions in a given box, It comprises two slages:
during the first stage, a relatively narrow starting box is determined using an appropriate inflation
technique while the second stage aims at reducing the widih of the starting box.

Two algorithms implementing the method have heen programmed in o C++ environment. Numer-
ical exumples scem to indicate that the second algorithm is rather efficient computation-wise.

‘The method is self-validating: the fultillment of a simple inclusion rule checked during its second
stage ensures that the interval bound thus found is an outer approximation to the solution set of the
perturhbed system investigated.

1. Introduction

The paper addresses the well-known problem of bounding the solution set of per-
turbed (i.e. parameters-dependent) systems of non-linear equations (e.g. [1]-[3],
[101-[12]). More specifically, let the system considered be

flx,p) =0, (1.1a)

PEP. (1.1b)
where f: U c R" x R", D R”, and E < R™ are closed and connected sets with
D x E c U, and p is an m-dimensional interval vector in E. (For simplicity of
nrotation, following [4], [8], throughout the paper interval quantities will be denoted
by bold face letters while ordinary font letters will stand for real non-interval
quantities,)

It is assumed that a pair (&, p¥) € U is known such that f(x". p") = O with

p" € p. p¥ is usually the center of p. The solution set S;(p) of (1.1) is the set

Sip)={x: fle.p)=0, pep}. (1.2)

The interval hull of §;(p) will be denoted x*; any other interval x such that x* c x
will be referred to as an interval (outer) bound on S,{p). The width of x {or x*)
serves as a4 measure for the sensitivity of the solution x(p) when p varies around p?

inp.
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A method for determining x* is suggested in [3]. It reduces to globally solving 2n
constrained optimization problems. As it is rather time-consuming its applicability
is limited to systems of low size n. Most often, a tight interval bound x is sought
(e.g. [10]-[121). In [2), [3], {10}412] use is made of either an interval extension
J(x*,p) of the Jacobian to compute x or x* (x* > x) of (1.1) or an interval slope
matrix.

In the present paper, we suggest a new approach to tackling the problem of
finding a bound x on S;. It is based on an alternative linear interval enclosure of
factorable non-linear functions in a given box [5]-[7].

The paper is organized as follows. Section 2 presents the basic approach adopted
and the main results thereby obtained. The new method for computing the bound x
is presented in Section 3. Two numerical examples illustrating the applicability of
the method suggested are given in Section 4. The paper ends up with final remarks
in Section 5.

2. Main Results

Let g : z € RY — R be a continuous factorable function. It is known {7] that g can
be enclosed by the following affine linear interval function

o
Liz) =) agzj+b _ (2.0

i=1
(where «; are real numbers and & is an interval) having the property
8(2) € Ly(z), Zez (2.2)
Similar formulae are valid in the case where g : z € RY — R". Now
L{z)=Az+b, 1€z, (2.3)

where A is a real matrix and b is an interval vector; for the new notation, property
(2.2) is also valid. Constructive procedures for determining A and b are presented
in [5]-[7].

Referring back to system (1.1), let x¥ be a box large enough to contain Sy(p),
x™ and the bound x associated with a given p. The main result of the section is
formulated in the following theorem.

THEOREM 2.1. Let x* < x¥ and x = x*. Furthermore, let
Lix* . p)y=A"x+A"p+b. xex', pep (2.4)

be the linear interval enclosure of (1.1) in z = (x*,p). Alsa, let §;(p) denote the
solution set of the linear interval system

Ax+A"p+b =0, pep (2.3)



Then
Sip) c 8;(p) (2.6}

Proof. Denote (2.4) equivalently as

Liz)=Az+85, 7€z, 2.7
where z = (x, p). On account of the inclusion property (2.2)

flzy=Az+b, Vziez (2.8)
If y e zis a zero of (1.1}, then f(¥} = 0. Hence from (2.8)

OeAv+b 2.9
Let b = [b. b]. The inclusion (2.9) can be written as

0<Av+b (2.10a)
and

0> Av+b (2.10b)
or equivalently

0=Ay+b,  beb. (2.11)
Returning back to the components AY and AP of A

A'x+Ap+bh=0, pep, beb (2.12)

So, if x € S;(p}, then there exists a pair (x, p) satistying (2.12). But (2.12) defines
the solution set §; (p) of (2.5). Hence x € S{p) implies x € S, (p) which completes
the proof. O

Itis easily seen from (2.12) that the solution set S; (p} is a convex polyhedron.
Using elementary set-theoretical considerations, the following corollary can be
readily proved.

COROLLARY 2.1. The solution set S(pY of (1.1) is also contained in the intersec-
Hon

Spp = S;(p) A x". (2.13)

Let Ay denote the interval hull of Stp. Then Ry is a bound on the selution set

$¢(p).
We can find a slightly wider bound than k) in the following way, Rewrite (2.12)
in the form

Ax+b =0, b =b, (2.14a)
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where
b =Ap+b (2.14b)

Using the same argument as in Theorem 2.1 and Corollary 2.1, now we have the
following results.

THEOREM 2.2. Let x* < x*, x < x* und let S¢(b") denote the solution set of (2.14).
Then

S/(p) < SL(b). (2.15)

COROLLARY 2.2. The solution set S{{pyof (1.1} is also contained in the intersec-
tion

Sw(p) =56y nx’. {2.16)

Let ki be the interval hull of Sy ; then &> is another bound on the solution set
of (1.1). It follows from elementary set-inclusion considerations that

h:ohy. (2.1

It is casily seen that iy or A, can be determined by solving 2n linear programnung
problems associated with (2.12) or (2.14), respectively. Such an approach, however,
appears to be rather costly for larger n. Therefore, a slightly wider but by far less
expensive bound A3 will be suggested now. It is based on the following theorem.

THEOREM 2.3. Let x* cx', x cx" and

hy=—(A0"'p". (2.18)
Then

S{p) < ha (2.19)
and

hy c hy chs. (2.20)

COROLLARY 2.3. The solution set Si(p} of (1.1} is also contained in the intersec-
tion hy nx’,

The proof of the above theorem and corollary follows directly from Theorem 2.2
and Corollary 2.2,

Unlike #, and k,, the bound x = k3 is determined in a comparatively much
cheaper manner by just one single inversion of the real matrix A* and a subsequent
multiplication by an interval vector.
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Remark 2.1. The bound Ay can be improved if rather than using (2.18) 4, is
computed as follows

hy = -Cb— |CA”p, (2.21)

where C is the inverse of A*, The validity of (2.21) follows from (2.12) if (2, 12) is
first premultiplied by matrix C. Moreover, it is easily seen that

hychy (2.22)
indeed, from (2.14) and (2.18)
hy=—Ch — C|A"p]. (2.23)

Comparison of (2.21) with (2.23) and application of the subdistributivity property
leads to (2.22). It should however be borne in mind that formulae (2.18), (2.14b}
require a lesser volume of computation than (2.21) and may turn out to be g better
choice for large-size problems,

Henceforth, to simplity presentation, ounly the cruder bound 4 will be used.

3. The New Method

In this section, we present a method for determining a bound x on the sotution set
Sy(p) of (1.1). It consists of two stages: during the first stage, a “good” starting box
X" is determined: the second stage is based on Theorem 2.3 and aims at improving
x* by making it narrower.

From a computational efficiency point of view the selection of a good starting
box for the second stage of the present method is of great importance. Indeed, if
*° ts chosen too large, the second stage will take too many iterations to converge;
conversely, if x* is not large enough, it might not contain the outer solution x = ki,
as required by Theorem 2.3,

We start by presenting the first stage of the new method. This stage can be
tmplemented in two different ways using the following two procedures.

PROCEDURE 3.1, We choose P’ = p" (0 is the centre of p) and determine
as the corresponding solution of f(x, p). Now a narrow box x¥ of small width g,
centered at x” is introduced and (1.1) is enclosed by the linear interval form (2.4)
inz% = x"p). i.e. we determine

Lix".p) = Ajx + Alp + by, (3.1a)
xXe x“, pep. (3.1b)

It is to be stressed that (3.1) is an enclosure of (1.1) only in z°. However, (3.1a)
will be used as a lincar approximation of (1.1} in a larger box 7' = (x'.p). The
component x' of z' is determined in the following way. First, based on Theorem 2.3
we compute
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<= —(Ap~'b, (3.20)
where
by = AEP + by. (3.2b)

Now the iterative procedure is started by putting x? = x! und going back to (3.1).

PROCEDURE 3.2. It is similar in structure to the previous procedure. The only
difference lies in the way the component x' 1s determined at each iteration. We start
as in Procedure 3.1 by computing x' using (3.2). At this point x! is renamed x” and
the new x' is found by taking the union

x =x nx’, (3.2¢)
Next we let x¥ = x! and the iterations continue from (3.1) as in the previous
procedure.

At this point, we need the following assumption,

ASSUMPTION 3.1. For a given box p Procedure 3.1 (Procedure 3.2) 1s convergent
to ¢ stationary interval vector x* having the property

xtcxt. (1.3)

This assumption seems to be fulfilled most often in practice for relatively small
boxes p and under reasonable requirements (such is given in e.g. [3], [10]-[12]} on
the non-linear function # in (1.1}. The inclusion (3.3} is expected because of the
fact that at cach iteration & before convergence the current approximation Lix'™ . p)
of f(x,p) becomes better and the box x*) larger than L(x*~" p) and x* 1,
respectively.

In practice, Procedure 3.1 (Procedure 3.2) is terminated whenever the distance
between two successive iterations X' and x* ~1 becomes smaller than an accuracy
e1. This approximate stationary box denoted as x“ may be smaller than the stationary
box x*. To facilitate inclusion (3.3). we inflate x“, i.e. we let

f=x{+ (1 + &) -R.R] (3.4

where R is the radius of x and &2 = (.
After the box x* has been determined by (3.4} we proceed to the second stage
of the present method. Now we try to reduce x* using the following procedure.

PROCEDURE 3.3, We let x = x* and construct the corresponding linear approxi-
mation of f(x, pyin (x". pyusing (3.1). By (3.2a) and (3.2b) we find the corresponding
box x’. Next, a new box x' iy introduced by the intersection.

x'=x naxl (3.9

Now we letx” = x' and the iterative process continues from (3.1} Itterminates when
the distance between two successive boxes becomes smaller than an accuracy €.
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The distance used in the stopping criterion for Procedures 3.1 to 3.3 is computed
as the maximum among the absolute values of the differences between the widths
of the corresponding components.

It is seen that the method suggested above cun be implemented as:

a) Algorithm Al which is based on Procedures 3.1 and 3.3;
b) Algorithm A2 which uses Procedures 3.2 and 3.3,

Experimental evidence seems to indicate that Algorithm A2 requires less iterations
than Algorithm Al to solve the perturbed problem considered.

The second stage of the present method permits to computationally test the
validity of inclusion (3.3) in Assumption 3.1. More precisely, we have the following
result.

THEOREM 3.1. Let x* be determined by Procedure 3.1 or Procedure 3.2 using
(3.4). Let x° be the box obtained at the k-th iteration of Procedure 3.3 wi thx' = x*.
if the condition

x® = int(x") (3.6)
(int denoting interior} is fulfilled for some k > 1, then the second stage of the
methad validates assumption (3.3).

Proof. On account of Coroltary 2.3 the solution set S¢(p} as well as its interval
hull x* cannot have points lying outside the intersection Az n x*. Thus, x* cunnot
have points outside x* ~ x¥, Now assume that (3.6) holds for some &. In this case,
x* lies strictly within x* and is therefore encircled by a “ring” (formed by the
difference x* 7 x*) which does not contain points betonging to x*. On the other
hand, x**’ is bound to contain x* by construction, i.e.

x* e x® (3.7)
Finally, on account of (3.7), the validity of (3.6) implies the inclusion (3.3)
x"cx'.
which concludes the proof. O

Remark 3. 1. We can reduce the overestimation of the bound x obtained by the present
method appealing to the well-known technique of partitioning the parameter box p
into a given number N of subboxes p*?, We then apply the method to each subbox
P to get a corresponding bound x'*’, The box x bounding the solution sct of the
original problem is now obtained as the interval hull of the union of all boxes x'*.
Obviously, such an approach is only applicable to problems where the dimension
m of the parameter vector p is small.

4. Numerical Examples

In this section we give two examples illustrating the applicability of the method
suggested. The examples have been solved by both Algorithms Al and A2 with
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Table .
Stage 1 Stage 2 Toal
Algorithm { 9 4 13
N.
" Algorithm 2 6 4 10

£ = € = & = 10—, The algorithms were programmed using the algorithmic
language C++. The linear interval enclosures (2.3) were generated automatically
by a procedure that implements the approach suggested in (7).

EXAMPLE 4.1. The system of equation is

(e—xip —x3 =0
xiipr—x3 =0, (4.1
X2 —x?!(l +.r%) = {,

where ¢ is a constant. In this example x = (x1,x2,X3) and p = (p1.p2). We chose

¢ = 3.25 and p! = 2000, p§ = 1000. The corresponding poiat solution 2" is

£ = (1.083,0.5399, 0.001083). (4.2)
The parameter vector p was chosen to be

p = ([1800, 22001, 1900, 1100]) (4.3

For this simple example, the interval hull x* of the solution set of {4.1), (4.3) can
be easily computed to be (approximately)

x* = ([0.9435, 1.2327], [0.4709.0.6031], 10.00098, 0.001211]). (4.4)

Application of Algorithms Al and A2 with g2 = 0.05 led to the following bound
on {(4.4):

x = {|0.9129, 1.254], |0.4546.0.6182], [0.0009618, 0.001216]). (4.5)

It is seen that the box {4.5) is an outer approximation of the solution set (4.4) of the
perturbed system (4.1), (4.3).

The satisfaction of the inclusion (3.6) ensuring the validity of (4.5) was achieved
for both algorithms at the first iteration of the second stage, i.e. for k = 1 of
Procedure 3.3.

Table 1 lists the number of iterations N; needed to terminate stages [ and 2
of the respective algorithms as well as the total number of iterations for each
algorithm. It is seen that Algorithm A2 requires less iterations as compared to
Algorithm Al.
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Table 2.

Stage | Stage 2 Total

Algorithm ! 27 8 35
Ni
Algorithm 2 13 7 20

EXAMPLE 4.2. In this example the perturbed system is
107935 — 1)+ pix; — 1.6722x + 0.6689%x; — 8.0267 = 0,
198 - 10 %™ — 1)+ 0.6622x; + ppaz + 0.6622x; +4.0535 =0, (4.62)
107%™ — D+x) —xp+pxy- 6=0
p = (p1.p2.p3) € ([0.6020,0.7358], |1.2110, 1.4801], §3.6,4.4]) (4.6b)

and models an electric circuit containing a transistor, a diode and two resis-
tors [9].
Application of Algorithms Al and A2 yielded the following results, respective-

by:

(10.5401.0.5682], |—3.8926, —3.1153], [0.3483, 0.5387]), (4.7)
(10.5402, 0.5680|, [—3.8910, —3.1194], [0.3473,0.5331]). {4.8)

For Algorithm Al, & = 0.05 and the fulliliment of (3.6) was achicved at k = |
of Procedure 3.3. For Algorithm A2 we chose £ = 0 and nevertheless (3.6} was
satisfied already at & = 2 of Procedure 3.3. Thus, both bounds {4.7) and (4.8} arc
guaranteed to contain the solution set (4.6).

The numbers of iterations corresponding to the two algorithms are listed in
Table 2. Once again, as in Example 4.1 Algorithm A2 outperforms Algorithm Al.

Example 4.2 was solved in [9] by an algorithm similar in structure to algorithm
A2 (however, in |9} each iteration of both the first and sccond stage of the algorithm
requires the solution of a corresponding linear interval system) and the following
bound was obtained

x = (]0.5103,0.5778], [--4.3520, —2.6756/, [(.3483, 1.5898)). 4.9)

It is worth noting that the bound (4.9) is more conservative as compared to (4.7)
and (4.8) and at the same time took more iterations to be reached: total number of
iterations 166 (85 iterations for the first stage and 81 iterations for second stage).

5. Conclusion

A method for tackling the problem of bounding the solution set of a parameters-
dependent non-lincar systems of equations (1.1) by an interval box x has been
proposed. The method is based on a recently suggested linear interval enclosure
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(2.3) of the non-linear system involved. This approach is rather general since (2.3)
can be constructed for the broad class of factorable functions, containing functions
that may be only continuous.

The theoretical basis of the methed is provided in Section 2: Theorems 2.1 10 2.3.
The method proper is presented in Section 3 where two two-staged algorithms are
suggested. According to Theorem 3.1, their second stage (Procedure 3.3) involves
the computattonal verification of the validity of the algorithms.

The new method is implemented as a computer program written in C++. Numeri-
cal evidence seems to indicate that it provides cheap and tight bounds on the solution
set of the perturbed non-linear systems investigated. These bounds are, however,
not rigorous since the present implementation of the method does not account for
round-off errors. It is the intention of the authors to develop an algorithm and a
computer program which will implement the method with complete computational
rigor, thus providing infallible outer bounds on the perturbed solution set.

Acknowledgements

The authors are thankful to the referees for their remarks and suggestions.

References

I. Adams, E.: On Sets of Solutions of Cellections of Noenlinear Systems in IR", in: Nickel, K. (ed.),
Interval Mathematics, Academic Press, New York— London—Toronm. 1480, pp. 247-256.

2. Gay, ID.; Computing Perturbation Bounds for Nonlinear Algebraic Equations, SIAM £ Numer.
Anal. 20 (1983), pp. 638-651.

3. Hansen, E.: Global Oprimization Using Interval Analysis, Marcel Dekker Ine.. New York, 1992,

4. Kearfott, R. B.: Rigorous Global Search: Continenss Problems, Kluwer Academic Publishers,
Dordrecht—Boston—London, 1996,

3. Kelev, L.: A New Method for Global Solulion of Nonlincar Equations, Reliable Computing 4 (2)
(1998}, pp. 125-146.

6. Kalev, L.: An Improved Method for Globa! Solutien of Nonlinear Systems, Reliatle Comyputing
52y (1999), pp. 103111,

7. Kolev, L.: Automatic Computation of a Linear Interval Enclosure, Reliabte Computing T (1)
(2001), pp. 17-28.

8. Kolev, L.: Interval Methods in Circuit Theory, in; Toshev, G., Hinova, L, and Kolev, L., Theoretical
Electrotechnics, Part 4, Technica, Sofia, 1993, pp. 7-63,

Y. Kulev, L. and Mladenov, V.: Worst-Case Tolerance Analysis of Non-Linear Cireuits Using
an Inierval Method, in: Proe. of the X International Symp. on Theoretical Electrical Eng..
Magdeburg, Germany, Scptember 6%, 1999, pp. 621-623,

10, Krawezyk, R.: Interval Iteration for Inctuding a Set of Solutions, Comp. 32 (1984}, pp. 13-31,

11, Neumaier, A.: Interval Methods for Systems of Eguations, Cambridge Univ. Press, Cambridge,
1990,

i2. Neumaier, A.: Rigorous Sensitiviry Analysis for Parameter-Dependent Systems of Equations, J.
Muath, Anal. and Appl. 144 (1.1) (1989), pp. 16-25.



