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A NEW INTERVAL METHOD FOR GLOBAL OPTIMIZATION
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Techmeal University of Sofia, Faculy of Automatica.Bulgaria, Sofia 1756,
e-mail: lkelev@vmeiacad bg

Abstract

Inierval methods are werative methods capable of solving
the general nonlinear programming problem globally,
providing infallible bounds both on the optimum (optima)
and the corresponding solutton coordinates. However,
their computational complexity grows rapidly with the
dimensson of the problem and the size of the search
domain. In this paper. a new interval method is suggested
which seems 1o have improved numerical efficiency. It is
bused on the use of a new interval linearization of the non-
fincar functions invelved. Twa algorithms for computing
ih are presented. The new  optimization  methed
invorpurales seven provedures that are implemented by
way of the new ntersal hinearization. A numerical
soample dlustranng the method suggested 15 alsa poen

1. Introduction

Apelvng onterval analysis techmigues o solang sarous
global  uptimuzainon problems  has been a muyor
defermimshic ap proach over the lastdecades [17 - [§]

In this paper. 3 new interval method s suggested for
wiebdl  soluton of the fullowing constiraint optimization

probiem.
SMimimaze
Pt (la)
subject 10 the constrainis
@ lx)s0, =012 .r { b}
xex%cr" (lc)

where ¥ 15 a n-dimensional vector and X' 15 a given
imitial search region {2 box). The functions in {la) and
i 1hy are assumed to be only continuous in X'%
It should be stressed that problem (F) presents in an
cquivalent form the general nonlincar programming
problem which also involves equality constraints
eia=0. 1=r+l ..y (1d)

Indeed. each equality construint can be  represented
equivalentds by two tnequalily constraents.
Let fix), s€ XCR", p2n be a cononuously
differentiable  funcuion. Known interval methods  for
salving {1} are ierative and are based on the fullowing
mterval hinearization of f in X

LOXV= [l =5 (XHX, -1 s ()

where " 15 the centre of X and G,{ X} is either the inter-
val exiension of the derivative g,{x)=df/dv, or the
corresponding interval slope [3], [5]. [9]- In contrast, the
present method appeals 1o a new interval linearization of f
in the form: ’
LUXy=Fax+B. x€X, (3)
=]
where a; are real numbers and only 8 is an interval. The
use of (1) in the computational scheme of the new global
oplimization method leads o improved performance as
compared to the other known methods since it permits a
better (tighter} enclosure of the original nonlinear
functions. Another advantage of the alternative form (3)
resides 1o the fact Lhat it i1s applicable 1o nonlinear
functions that are only continunuos or even discontinuous.

2. New interval linearization of a
nonlinecar function

Two  algonthms  for determining  the  mew  nterval
lincarizanon 13) will be presented in thes section

2.1. I'irst algorithm

Lel £on) bea multivanale funciion f: Dc R = R,
The transformation of a nonhinear Machon fio, ve X
to the new linear mnterval form (33 can be done following
the approach suggested in [6]-[8]. If f{x)} is in separable
form . &, and B can be determined by a procedure given
in [6]. For an arbitrary function f(x) (which is
continuous or even discontinuous) (3} can be evaluated by
following the approach suggested in {7). |8]. Firs, f is
transformed into a system of equations of the so-calied
semiseparable form [7) by introducing a certain number m
of auxiliary variables. Afterwards, each new semi-
separable equation is easily transformed into form (3).
Thus, a svstem of m+l linear inlerval equations is
generated. Finally, the auxiliary variables are eliminated
from the latter Linear system 10 yield the tinear form (3)
corresponding 10 the oniginal function f.

Thus. the approach outlined above invelves the following
S[Cp\.

Step |. Transformanon 1o semiseparable form.

A function f1s called 10 be in semiseparable form if [7)
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f(x)‘):f(xHZ Ea“k! . @

i=1 k=1l=1
k=i
isome of these terms may be missing). The transformation
of an arbitrrary function to a set of functions of the
semiseparable form (4) can be done by the approach
sugpested in [7]. This possibility will be illustrated by the
fatlowing example
Example 1. Let
fla)=(x v xi
with ¥ € X and
X, =[0,1]. i=12,3 (5b)
The problem is to convert (5a) into a set of semiseparable
tunctions. With this in mind. we introduce two auxiliary
variables x, and x4 to get
Flxh=a,x

-1} {6}

(3a)

- 1)1} - xq)

e 1,: - l::
1y = l.\,: -y
“oowoall expressions in (b) are wn semiseparable form We
need also 1o evaluate the comresponding ranges
X, =|-1.1
=[-11]

Siep 2. Enclosing the auxiiary variable expressions.
P

{Ta)
(7b)

The above example shows that in the general case f(x)

w11l be transformed by the introduction of a given number
»rof auahary variables into a set of m+ | functions of
~ciniseparable form
fiov)y =00 (8
O DR 2...m. veR™MT
Cemented” vector of variables. For Example 1 sysiem
s gsen by (6 with
Taena ). J, =, =12
AL thas point, each funcuion f,, {=0,1,...,m i5 enclosed
+ u carresponding linear enclosure {3). Thus, for the
vaample considered

fo=., . =1 15 the

LR

RSN | m=2

fo= FEauvy raghg =By, v, € X, 1€ X, (9]
Cs g Ea rayt o, yEX A E N, D
r e a8y, e X ah
In the general case

A= hh
fo€ Tag,n, + By (123

Ll
L.€Lax, +B, i=12..m {13)

Iy

A
=Xa,X +8 (137

Fadl

arep 3. Eliminating the auxiliary variables

. the final step, the auxiliary variables are ehiminaied
cmg 12y and (13). This possibility wilt be illustrated by
~av of Example 1. Substiwating (10) and {11) inta (9), we

W E U N, F By m U )y * gy T
+8Byra B a8,
iuaablv, f 1) given by (5a) has been enclosed in the box
V' wuth sides (5b) by the linear interval expression

(14
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L(.v:)=ai,rl~|-x:r'2.=r2 +a'3.r3+B (15a)

with
a =aa, . "-: =40y ~dg ., a:‘=ala, (15b)
8 = By +a,B, + a8, (15c)

2.2. Second algorithm

Now, the only assumption on s thal [ 1s 2 factorable
funcuon |17}, vomposed of the four ardhmetc
operanions {+, -. *. /) and the unary aperations (sin, exp,
log. sqrt. abs. e1c.). However, to simplify the presentation,
the linear interval enciosure (1) will be first determined
for the class of polynomial functions. Later on. the
approach adopied for polynomial funclions will be
extended to arbatrary factoriable functions.

A. Polynumial Functions

In thes suteecnon, an algonthm will be suggested for
determuiy tne rerval enclosure 133 tor the
special Luse where §onoa pulsnomial funcion Thas
algorithin s based on the nouon il g wenerahized interval
[3]. We shalb introduce o shighily dalterent generalized
representation tn the following manner.

lnea

Let X =(X,....X,) and
X, =¢,+V | i=1l..n (16a)
where ¢, s the centre of X, and V; 15 2 symmeirical
interval
Ve |-k LR | (e
R being the radis of 0 e
K=y = )

Defurinon 1 A penerahzed intersal X s defined as the

affine lunction

(Db

il

(-R, K]

L}

X = 20‘.'\" o, vV LV

and

where 1 are reat numbers while V, and V| are
centred "ordinany T ntervals.
Using X _any “ordimary " interval can be represented by

anapprosiate Chotee of the terms ol X Indeed, letiing
i, = - L and b - b ae 2et

N Vo Vowhere A s dhe pih ordinary atersal

Now owe saihdetine tie operations cfadditon and
multiphoation ol genetatized mtervals G amervalsy Lot

Y= iBl"’l o, Vo,

1%l
be a G imerval Then we have the following rules.
Addition. Let X and ¥ be two G intervals pvcn by (17
and {18) Thesumot § and ¥ denotedas X +7 is
another Gantersal 7

V,=[-R,. K] 3.3

2% Vo= |-R.OR | 19a)

and
o 00 =l (19by
e ve,. Ro=R K (19¢)



Multiplication. The product X.¥ of vo G intervals X
and ¥ is another G interval Z if:

y =¢c B +e.0,. i=hin (20a)
1 L]
£, =c,c, + 2 zaa'ﬁi R‘I-J (20b)

R = RIR." +]c‘_‘1R_‘. +|c.v1Rx + i |a,ﬁ‘ |RI'RJ +
WL (ZOC)

<R, 5|8,
=1

( R, is the radius of X ).

The proof of (191 and (20} is based on ¢lementary
properues of adding. multiplying and centring ordinary
intervals and is therefore omitied.

Using the above two operations. any intermediate or final
result in evaluating the interval exiension of a polynomial
function can be represenied as a generalized interval.
Indeed. multuplving an ordinary or G nterval by a
conslanl ¢ is a special case of the muluplication
Z7=X VY UM X=c=-1we get 7 = -¥ and the rules for
the operation of subtraction tollow immedinely,
Subsraction. For 2 = X =¥

y =a -f. i=l..n c.=c, -¢c, (212)

R.=R +R, (21b)

Evample 2 Letx=(xux) and

fio=iy-2x). x,€X,. =12 {220

Find the linear interval enclosure {3} corresponding to
(12).

R, +R, i}al |Rl +% ifa,ﬁ,lRf
r=] -tk

We first introduce the G intervals
Xo=aV +0Viee Xo =0V, +8:V, +cy
with @, = 1. B, = 2. Then we compute

¥=X-X. {23
usine (211 The final resultis obtamed as the product
FrXr=2=YXN =yV +7rd,~c -V, (24

computed by (20}

The hinear form (24) represents equivalently {for the
example considered) the hnear form (3} [ndeed. from
1167

V=X -¢. i=12 (25)
and substuting (250 mte (24) we pet
FitXy=a X ~a.X.-H (20

with
=¥, a.=Y.. B=c. -y, -y V (20b)

B. Facinrable functions

The approach suggested n Section 22 A will be now
exiended to arbitrary factarable funchions (9] A function
f:DC R" = R is a factorabie function (f.f.) i and only
if it can be represented by an expression f{x) which is
the lasi element in a finite sequence {f;(x)) of

expressions. For the case of fecC (D), the list of
admissible expressions is given in [9]. An approach lo
treating non-differentiable functiens 15 considered in {3}
Ch. 14. Ap ahernanve idea is suggested in |5], Ch. 6.
Here, we shall conuder the peneral situation when

feC'(D). f eC"(D) or even when some expressions
/. (x) may be discontinuous functions.

Let W denote the set of all building expressions for a
given {.f. For our purposes, it is convenicnt to divide W
into two parts W, and W, such that

W=WUWw,
The set W, is made up of expressions which are used 1o
construct a multivariate polynomial function. The set W,
contains the following three groups of expressions:

{1} the reciprocal value operation

fta=l/x, xeXeR, OeX (27)

(ii) the set © containing standard funcuons P, 1o be
found in high level programming languages, i.c.

@ = {sgrt(-).exp(.).In( ). sin(-).absi ). ) (28)
The set D can be entarged as appropriate. For instance, it
may include various discontinuous functions. A typical
example of such functions is the unit step function  1(x)

defined as:
() = { l. for x>0 29)
0. for x<0 -
tiii) unary funcuions f,: R — R which may include

rational and trrational parts.

The main characteristic of all unary funchons f, & W,
1< the fact that they allow casy computation of a
correspending linear interval enclosure (3).

Now we are in a position 1o present an algonthm for
comp.ting {3) for the case of an arbitrary f.f. We assume
that :he sequence f, (x) representing the function at hand

f has already been chosen. To simplify the presentation,
we assume additionally that the first & expressions f, € W,
while the remaining [, € W, (in the peneral case. the
appearmce of f, €W, and f eW, in the sequence
t £, (1) may have 2 mare complex paitesn).

On account of the results obtained in subsection 2.2 A
tt is clear that the linear interval enclosere £ {X)

corresponding o the last expression f, { 1) belonging o
W, s piven by the G interval

F, = ial, X, +8 (301
2=l
whuch has been compuled recursively using Ganlervals fr
corresponding 1o cxpressions [, with j<k.

Now consider the first function f €W, | i1c the
function f,., Accordiry to the comstruction of the
sequenve 0, (o))

fialey= fo Uf e (3la)

filoe FiX) (31b)

Since fy,, is a unary function, it can be enclosed by the
interval function

Fia =au1F1 +8,0 (32)

where a,,, and B8,,, are determined in one way or

another {depending on whether f., is a2 €".C° or

discontinuous function). Substituting (30) into (32}, it 18
seen that £, ., can be represented as a G interval
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ﬁ1-|=zahl_,x1+3n| - {332)
1=l
with
iy =Gy« Biyy=a,, 8 +B (33b)
Since (31) remains valid if the index k+1 is replaced with
¢ > k+], it is clear that the recursive formula {33} also
holds for i » k+1. Thus, it has been shown that the
factoniabie function can be enclosed in X by a G interval

F‘:iafxﬁa (34)
. el
whose coefficients &, and additive term 8 can be
determined in a recursive way using only the binary
eperations (19), (20}, (21} (addition, multiplication and
subtracting of two G intervals) and (33} {muliiplication of
a G imerval by a scalar).
Example 3[9] Find the interval enclosure for
flo=x}texp(x), X, =[l, 15}, X, =12,2.5)(3%
The function fix) can be defined by the comesponding
clernent fyi ) from the following sequence

JASSER {36a)
fale)=1lexpix,) (36b)
f]li}"-fi(-ﬂf:[vﬁ) (36¢c)

Applying the above algorithm we first have to compute
the enclosure for {36a):

FiX)=aX, +8, {372)
Using Procedure 1 from [7] we have

b, =-all4, b=-xxi (37b)

fn a stmilar way, we find the enclosure for (36b):

FiX)=a,X,+8, (38}
where
f=-liay, b, =1/B-a,lnB. b:= f:[I:}-uJ;:
tIn (37) and (38), 4| and ap are the respecuve slopes.)
The expressions (37a) and (38) are then represented in the
form of two generalized intervals F, and £,. Finally, the

enclosure F{X) of (35) is given by the product F, 5, ie.

F(Xy=FE, =y \V,+Y,V,+8B (39)
Using {39). we have obtained
F{X)y=0.0367, 0.3045] {40)

The same example was solved 16 19] using first- and
second-order anterval  derivatives  and  slopes.  The
tollowing results have been obtained Lhere:

Fo =1-0.013, 0.35) F¢ =[0.018, 0.32] (1w

Fpr =1 0014, 0.32] F5, =10.021 0.31] (41b)
Comparison of (40) and (41) shows that fur the example
cunsidered the present algorithm provides a narrower
enciosure 1han the approach used tn 9]

3. The new method

It13 based on the following set of provedures 1o be carried
out gt each iteranon. The interval extensions required in
cvery procedure are implemented using the new linear
furm (3}

Frocedure |. Let ao be a current upper bound of
@alx), TEX where X © X If

628

D X) > gy (42)
then X is discarded {1}, {3).
Procedure 2. Monotonocity test [ 1), [3] I X s strictly
admissible 1s.a.4 ]3] and for some ¢
G{X)>00or G (X)1<0 (43)
where G, ( X} 1s the interval extension of &g / oy, then X
is discarded.
Procedure 3. Nonconvexity test. If X is s.a. and
H,(X)<0Q (44)
for any { = 1,...1, then X 1s discarded [3]. Here H, (X)

is the interval exlension of 8:%!&,:.
Procedure 4. Inadmissibility test. If
®(X)>0 (45)
forany { = l,...r. X is discarded [3}.
Procedure 5. If
DO, (X)<0 (46)
then the comresponding constraint 15 inactive and c¢an be
ignured tor the current iteration.
Procedure 6. This procedure is an attempt 10 reduce the
currgnt box N € R" using separately each of the
inequalitiey
Ly = Sy + B, €@, <0 (47a)
el
LiY)= '_‘:(I';'.\"«-Br 55050. =18 (470}
where 4 (F) s the himear umerval Torm (3} corresponding
to funcuon ¢ (4, = 0.0r.
Procedure 7. This procedure 15 based on the linearization
of the so-culled Friz-John system

vzt e Y g o0,y =00

Jru=w g any=00 40 Lor (48

fim) = i“. ~-1=0
ral}

where ¢ &, are scalars. This is a nonlinear system of m
equations in m unknowns and. in general, m=n+r+ 1.
However, al some iterations »r ¢an be reduced by '
Procedure 2 orfand Procedure 5. Each function f, (1) in

(48 1 then lineanized in X < R™ and the following
SY3lem o setup

Av= 8 149)
whure A as constant treal) e v o matniy while 8 is an
interval vector Ssstem () s then solbved anan efficient
manner by the use of the so-called equattonwise constrainl
propugation |81

4. Numerical example

Wo consider the Tollowing optunization problem ([3],
pime
STiimize

Wyl = =6y w120 6r,. »oxy (50a)




subject to
@;(x)=1-165] -25x; €0
@,0x) = 13x) - 1454, +851, - 4000 (500)
py(x) =xx, -4<0
There are two global solutions:
x] = $006604. x, = :0.1929 {54
and the global minimum is
@y =0.1990 (52)

The p;ob-lcm has been solved with accuracy € = 104 for
various starting  boxes X™  The results are quile
encouraging. Thus. for X o2 x1® ={-1.4] the method
required N;=107 seranons o find the global solunons
(51). (52) and took 1=0.33 sec when run ona 160 MHz
Pentium computer. As the volume of the staring box X o
was enlarged 1000000 nmes. the run tme wis increased
only 3562 umes.

5. Conclusion

in this paper, the general nonlincar programming problem
(or 11s variants) is addressed. A new mterval method for
the global soluton of the optimzation problem
considered has been suggested. [U s based on an
siternative interval lineanizaton of the nonlincar functions
imvolved which is updated at each iterabon of the
computation process. The interval fineanzanon suggesied
i< more general than  other known lineanization forms
since il is capable of enclesing functions thal ar¢ only
cannnuous or even discontinuous. The present interval
Lineanization 1s in the form of an affine interval function
where only the additive term is an interval whith accounts
for 1s better enclosing properties.

In us present form. the global optimization method
sugpested is based on the use of seven procedures that are
implemented through the new inlerval hincanzanan. More
wophisucated computational schemes. inludiny addinonst
procedures. are howesee pensihle 11 the optimizason
problem considered pvolies a sysiem ol nonlinear
inequality constraints, one such procedure can solve {in
the sense of [3]) this inequality sysiem at each ieration of
the iterabive process.
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