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Worst-Case Tolerance Analysis of Linear
DC and AC Electric Circuits

Lubomir Kolev, Senior Member, IEEE

Abstract--This paper addresses the problem of worst-case
tolerance analysis of steady states in lincar dec and ac electric
circuits. The statement of the problem considered is in the form
of lincar algebraic equations whose elements are, in the general
case, nonlincar functions of a given set of independent interval
parameters. Three kinds of solutions arc considered: 1) outer
solution; 2} inner solution and 3) exact solution. A direct method
for computing an outer solution and an iterative method for
finding an inner solution are suggested. The inner and outer
solutions thus found provide a tight two-sided bound on the
exact solution of the tolerance problem investigated. The exact
solution can be determined if certain monotonicity conditions
are fulfilled. The verification of the conditions involves solving
several associated outer solution problems. The computational
efficiency of the methods suggested is demonstrated by a numerical
example.

Index Terms—Interval analysis, interval methods, linear equa-
tions with dependent elements, worsi-case tolerance analysis.

I. INTRODUCTION

ORST-CASE tolerance analysis of linear circuits
(systems) is a well-established research area in circuit
theory, The traditional approach to handling this problem is to
use the Monte Carlo method. Starting with the pioneer works
{17 and [2]. an alternative approach based on the application
of interval analysis technique [3]-[5] has been in existence for
several decades. The methods utilizing the latter approach are
known as interval methods (cf. [6], [7] and the bibliography
therein cited)., Because of their high reliability the interest in
these methods has lately considerably increased.
Most warst-case tolerance analysis problems for linear cir-
cuits can be formulated in the following ways:

1} in explicit form as corresponding global optimization '

problems [2]. [6, Ch. 2}, [8], [9]:
2} inimplicit form using a system of linear interval equations
[1], {6, Ch, 3], [10])-[13].

This paper falls into the latter group of investigations. All
known methods pertaining to this group are based, in one way
or another, on the exact or approximate solution of a system
of linear algebraic equations whose elements are either inde-
pendent intervals (in the case of dc circuits [6], [10]) or are
assumed 1o be independent intervals (in the case of ac circuits
[11]-[13]). The requirement for independence of the elements
imposes stringent restrictions on the form of the system used:
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tableau forms (6] or the so-called hybrid form [11]-[13]. The
system must have independent interval elements since the in-
terval methods for solving linear systems applied so far to the
solution of tolerance problems are only capable of treating such
systems.

A more general and more flexible approach is adopted
in this paper. According to this approach, the worst-case
tolerance problem considered is solved using a corresponding
system of linear algebraic equations whose elements are now
interdependent. More precisely, each element can be a linear
or even nonlinear function of a given set of independent
paramneters. These take on their values within certain prescribed
tntervals. The interval solution of the linear system is then
transformed in a nonlinear fashion to provide the solution of
the tolerance problem on hand. The new approach covers all
possible worst-case tolerance problems related to dc and ac
linear circuits. For brevity, these problems will be referred to
as tolerance analysis (TA) problems. The following three kinds
of interval solutions 1o such problems will be considered:

1) outer solution;
2} inner solution;
3} exact solution.

The exact solution is the narrowest possible interval solution
of the TA problem considered (the rigorous definition of the
unique exact sclution will be given in the next section). An
outer solution is any interval solution that contains the exact
solution. Similarly, an inner solution is any interval solution
that is contained in the exact solution. Since the determination
of the exact solution is not always possible with acceptable
computational cost, cheap and tight inrer and outer solutions
will provide a good two-sided bound on the exact solution. Such
outer and inner solutions are obtained in the present paper. After
presenting the formulation of the TA problems in Section II,
a simple direct method for computing an outer sclution is
suggested in Section III It reduces essentially to inverting a
real n x n matrix and solving a system of n real linear algebraic
equations, n being the size of the original real linear interval
system describing the TA problem considered. In Section IV, a
simple iterative method for computing a tight inner solution is
proposed. Finally, a more invelved method for determining the
exact solution is presented in Section V. The latter method is.
however, applicable only if certain monatonicity conditions are
satisfied. It requires solving several associated outer solution
problems to computationally check the above monotonicity
conditions. The efficiency of the methods presented is illustrated
by way of a numerical example in Section VI. The paper ends
up with several concluding remarks.
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11. FORMULATION OF THE AT PROBLEMS

In this paper, an arbitrary TA problem can be formulated in
the following manner. First, a real linear algebraic system of
equations i3 set up

Alp)z = b(p) (1a)

where p is an m-dimensional parameter vector, A(p) and b(p)
are’an n X n matrix and an n-dimensional vector, respectively.
The elements of A(p) and b(p) are, in general, nonlinear func-
tions of m parameters

aii(p) =aij (P11-- - Pm) (1b)
bi(p) =bi (p1, .- -Pm) (1¢)

and the parameters take on their values within some prescribed
intervals, i.e.,
P €EPp, k=1,...,m (1d)
Here and henceforth, ordinary font letters will denote real
quantities while beld face letters will stand for their interval
counterparts. Thus, p = {(p1,..,pw) and p = (py... ., P,)
will denote a real and an interval vector of m components,
respectively.
The next step to formulating the TA problem is to define the
relationship

u = glz) (2)

which specifies the vector of output variables u and where g :
R — R, 1 < q < n. The pair (12)~(1d) and (2) formulates
the TA problem to be solved.

At this peint, the following assumption is needed.

Assumption 1. Bach matrix A(p}, p € p, is nonsingular.

Later, it will be shown that Assumption 1 can be easily veri-
fied numerically by a certain sufficient condition (Theorem 1).

The solution set of the pair {1a)-(1d) and (2} is the set

S(p) = {u:u=g(z),z=A"" PP, pep}. O
The interval hull of S(p) will be denoted w* and «" will be
called exact (interval hull} solution to problem {la}-(1d), (2).
Any other interval o' such that * C o’ will be referred to as
an outer solution to (la)—(1d), (2). Similarly, an interval vector
u' with the property u” C wu* will be referred to as an inner
solution to {1a)—(1d}, (2).

The description (12)—(1d), (2) is rather general and covers
all possible dc and ac TA problems formulated in {6, Sec. 3,
problems 3.1-3.10] . Typically, functions (1b) and (1¢) invalved
in most TA problems are affine (linear} functions of the elements
of p

Lid]

a{p) =eu; + Z 0Pk (da)
ﬂ. 1
bi(p) =B, + Z Bikpr (4b)

It is, however, knowti®[6] that in the general case, some of
the elements «@;; will be nonlinear functions if the circuit
investigated involves dependent current sources with interval
coefficients. Alse, some of the elements b; will be nonlinear
functions if the magnitudes of some voltage or current sources
are not known exactly (and are therefore given as intervals) and
loop analysis is used to set up the TA system of equations. The
nonlinear functions encountered in practice are continuously
differentiable with respect to the parameters considered.

The specific TA problem considered is finally defined by
choosing the function g{x) in (2). In some cases, g{x) is 2 linear
function. Thus, if we are interested in the determination of the
tolerances on all the components of x (as in {6, prob. 3.7,3.8],
then

n=1 {5a)
50
g=FK (5b)

(where E denotes the identity matrix). In the overwhelming ma-
jority of applications, the problem is to estimate only the range
of n’ components u} and n’ < n {typically n’ = 1inthe case of
direct current electrical circuits or »° = 2 in the case of alterna-
tive current electrical circuits). If we want to find the tolerance
on one single component ¥y of @, then {2) become

Uy = e{ -7 (6)

where e] is the transpose of the kth column of £. If the problem
is to estimate the tolerance on n’ culput variables (with n' > 1),
then the pair (la)-(id) and (6} is solved n' times. )

In the genéral case [6, prob. 3.9, 3.10), g(x) is a nonlinear
function. For example, if we want to find the tolerance on the
magnitude of a nodal voltage Vy [6, problem 3.9]), then

w= i+ Thy 7

where 75 and x4, are the real and imaginary parts of the com-
plex nodal voltage Vi,

Once the TA problem is defined by fixing (la)-(1d) and {2),
we have finally to specify which of the solutions outer, inner, or
exact is to be found.

1II. QUTER SOLUTION

In this section, first a method for determining an outer so-
lution £’ to problem (1a)-(1d) and (5a)—(5b) is suggested. The
solution =’ is then used to find an outer solution #’ to problem
(la)-(1d) and (2).

The derivation of the method is based on the general approach
employed in [16), {17}, on the one hand, and the result for the
case of affine functions a,;(p1, ..., Pm) [19], on the other.

To apply this approach, we need the following preliminary
facts {14]-{16]. First, let f : x € I — R7 be a continuously
differentiable function. The function f(x) can be enclosed in
the interval vector & by the following linear interval form:

Li(r)=Ar+e, r€Z (8)
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where A is a ¢ x n real {noninterval) matrix while @ is an interval
vector, The form (8) can be determined in an automatic way
using the algorithm of [16]. It has the inclusion property

flzye Lg(z). ze€x (9)
Secondly, consider the product
TY, EEL, YEY (10)

where € and 4 are intervals. If .y, 5o and r, 7y are the respective
centers and radii, then [14)

Yy € ~royo + Yor + soy + [—reryror,]. (1)

In accordance with (8), the corresponding linear interval forms
of (4a) and (4b} are

fIL

Lij(p) = Z Gkt @5, pEP (122}
k=1

Li(p) = Zﬁfu?k +b. pep (12b)
k=1

and have the inclusion property

ai{pyely(p), pep (13a)
bi(p) €li(p). pep (13b)

The approach herein adopted to determining an outer solution
to {la)—{1d} is based on the use of (8)~(13) and the method for
solving perturbed systems of equations in [17]. For this purpose,
{la)—(1d) is written in the form

flr,p) = Alp)r - b(p) =0, pep. (14)

We temporarily assume £ is a known interval vector. Then,
f{x, p) canbe enclosed in 2 = (z, p) by the linear interval form

Li(z.p)=A"z2+ APp+v, z€z, pep (15)

where A* and AP are n x n and n X m real matrices. On account

of the inclusion property

fle.p) € Lg(a,p), z€z, pEp (16)

Now, we shall obtain explicit expressions for A% and A? and v.
With this in mind, we first introduce the shorter notation L;; for
the intervals L;;(p) and {; for the intervals I;(p). Let I, denote
the interval matrix whose elements are L;; while L? denotes its
center. Also, let ¥ be the center of vector z. Then, on account
of (11)

Aplr e L'+ L2 +¢, rex. Lel {17a)
where
c=—L%" 4 [—° 1. (17b)
In {17b), the radius +7 of ¢ is given by

re o= REpT (17¢)

where % is the radius of L and »* is the radius of z. It is sezn
from (12a) that the elements Rfj of RT are computed as

m

RL = Z lexije| v} + R (17d)
k=1

where 7} is kth component of the radius r? of p and I s the

radius of a;;. On account of (12a), the elements L?J- of L. are

n

LY =al + > aijend. (17¢)
k=1
On the other hand, using (12a)

(La®), =S Lyad =D oupe+ac  (183)
=1 k=1

where
¥k :Z:.':?(.tuk (18b)
j=1
a; =Zx?au‘ (18¢)
j=1
In a similar way
1§ =t7+ Bunl (192)
k=1 :
I =b; + Z By, (19b)
k=1

[et I be the interval vector whose components are defined
through {19b). Combining

bp)el (20)

(17a), and (18a), we finally get the explicit expressions for 4™,
A? and v in (15)

A* =I° (2la)

Al :Zﬂukl’? - Bax (21b)
3=1

v=at+b+e (2le)

Now consider the linear interval system related to {(15)
V2 + APp+v=0, pep (22)

Let B = (L% ~! and C = BAP. From (22}, the solution for =
denoted k is

h=—-Cp- Bla+b) - Bc. (23)

So far, we have assumed that £ is a known interval vector.
Now, we proceed to determining z as an outer solution ',
First, we determine the center 2° of ' as the solution of

0= (24)

where L? and I" are defined by (17e) and (194}, respectively.
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We have next to determine the radius  of 2. On account of
23, {17a)-(17¢), and (21}

Crt = |C* + |B| (v + P) + | BIR. (25)
Let for simplicity of notation

c=|[Cr? + |B] {(v* + ) (26a)
D =\B|R. (26b)

Taking into account (25), a reasonable choice for rh is 1o deter-
mine it as the solution 3™ of the equation

y=¢+ Dy 27
or equivalently
(1= Ii)y =c. (28)

The main result of this section is the following theorem,
Theorem 1: Assume the solution »* to system {28) is posi-
tive, Then

1) the interval vector
z=a"+ K (292)
where
B o=y (29b)

is an outer solution to (la)—(1d);

2) matrix A{p) is nonsingular for each p € p.

The proof of the above theorem is similar to that of Theorem
2 in [19] and will therefore be omitted. The method used
to salve (28) should however guarantee the nonsingularity of
matrix [ - I

Based on Theorem 1, the present method for determining an
outer solution to system { 1a)-{id) comprises the following com-
putations. First, we evaluate matrix L® as well as matrix R using
(17e) and (17d). Next, L is inverted to get matrix B. Using
(26), we set up system (28). If the solution of (28} is positive,
then the outer solution is obtained from (29). If, on the other
hand, system (28} does not have a positive solution, the method
is not applicable.

If the TA problem is to find an outer solution u' to (la)-(1d)
and {2), o’ can be computed as follows:

u = g{x) (30)

where u is the range of g In z.

The above method for computing an outer approximation to
the exact solution of the TA problem considered will be referred
to as method M1

IV. INNER SOLUTION

In this section, first a simple iterative method for determining
an inner solutien z” to system (1a)-(1d} will be presented. In
fact, we compute individually each component 3, of 2. As in
the previous sectien, the method will then be extended to deter-
mining the component 1} of the inner solutian u” of problem
(ta)—(1d) and (2).

The method is biSéd on a local oplimization technique and
appeals to two procedures which determine separately the lower
endpoint 2/, and the upper endpoint Ty of z}. Each proce-
dure makes use of the derivatives of & with respect to py, I =
1,...,m. These derivatives are computed in the following way.

System (la) is written in detailed form as

"

Zaij(pl,...m)xj =bi(p,..m)=0, i=1,....n

i=l1

(31
We are interested in expressing the derivative of 2:; with respect
to pi, L = 1,...m. With this in mind, we differentiate Ghyinp,
and on account of (1b) and {1¢) we get

T

é)-.rj X ) .
Z “U‘(P)E{'}I = yalp) — Zl mples, i=1....n
J;

=1

{32a)
where
ab(p
Ta(p) = () (32b)
I
_. aaij (p) b
Bijlp) = o (32¢)
Systems {32a) and (32b)-{32¢) will be rewritten as
o
A(p)a = p(p) — mp)e(p) (32d)

where 7,(p) is a column vector and 7 (p) is a matrix. Hence, if
B(p) = A7 (p)

dr

Ep';(?’) = B(p) (nlp} —m{p)x(»)), pEP (33)

If we are interested in the kth component of di/dpy, then (33)
becomes

dry

d—(P) = Bi(p) (n{p) —mp)a(p)), pEP (34)
'

where By (p} is the kth row of B(p). Now, as can be easily seen,
By(p) can be computed in a most efficient manner as follows.
For a fixed p we solve the real system

AT(p)y=er, PEP (35)

where AT denotes the transpose of A and ¥ is the kth column
of the identity matrix. Finally, By is obtained as yT.

We have the following procedure for finding the lower end-
point zi of z.

Procedure 1: For a fixed k we start by evaluating the deriva-
tive di(p) = dax/dpip) for p = P Let df), = dit (P9,
AY = AR, BY = Bi(p®). 4? = m(p®). o) = n(»") and
x° = z(p®). On account of (34}

4, = B} (’}P ~ 7a") (36)
where

B =(")" (372)

< ar T



»

and 4" is the solution of the real system
(A% y = e (370)

Now, we determine new values p}, I = 1,...,mn, using the
following formula :

v _ Jpp de20
B {;?]h ifd;u{(] ’l-"]-'.---,ﬂl (38)

and form the vector ' = (pf,...,pl.). We then solve the

systent
Alp )z =b(p") (3%)
to find the vector z'. If

ah < xh (40)
a1 is renamed z{, p} are renamed pf, and the procedure is re-
sumed from the start; otherwise, the procedure is terminated and

the inner bound on g7, is given by the corresponding component
0
i
A similar procedure is valid for determining the upper end-
point Ty of .
Procedure 2: For a fixed k, we let p = p" and repeat the
computations (36) and (37a)-(37b) of Procedure 1. Now, we de-

termine a new vector y* with components x! using the formula

v [P fduz0
?JI_{E;'- ifdM(lD_.I—l,...,m. (41)
Then, the corresponding system {39) is solved and a new vector
2! is thus found. If

zh > ¥ (42)
2} is renamed z2, and p} are renamed p{ and the procedure is
resumed from the start; otherwise the procedure is stopped and
the inner bound on T}, is given by the corresponding component
9.

It is seen that Procedures 1 and 2 implement a strategy which
is based on a local optimization scheme. If the actual dependen-
cies of dry /dp; on dp; in p are monotone functions, these proce-
dures will produce, in fact, the exact solution =7, In the general
case, Procedures 1 and 2 will only provide inner bounds on x3..

Combined with the outer bounds &' the pair (", «') provides a
two-sided estimate of the exact solution z* of system {(1a}{1d).
The width of the interval vector w = z’ — '’ can serve as a
measure of the accuracy of the approximations =’ and z”.

The above approach can also be applied in the case of han-
dling the TA problem (1a)<{1d) and (2). The only difference is
that now we compute the derivatives of « with respect 1o .
Thus, for u defined by (7)

du
dny

diey s

(p), PEP

(43)
The inner sclution u” is then found using Procedures 1 and 2
that have been modified accordingly.

N oy 8T i,
(p) = 2e4(p) I (P) + 2xx4+1(p) dp

Ed
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V. EXACT SOLUTION

In this section, the exact solution to the TA problem (12)—(1d)
and (2), or problem (1a)—(1d) and (5b) will be sought. For sim-
plicity of the presentation, first a method for computing the
exact solution z}, of the simpler TA problem (1a)~(1d) and (5b)
will be suggested. The method is applicable only if the deriva-
tives dirs, /dp; are guaranteed to be monotone in p. These mono-
tonicity conditions can be checked in the following way.

Let &' be the outer solution of (1a)-(1d) computed by the
method presented in Section I Similarly, let B« and  de-
note the enclosure of the respective quantities for p € p. Then,
we can define Dy, as follows:

Dy = By (7, — .2’} (44)
and obviously
dxy,
d—k(P) eD.y pep (45)
P

Hence, the derivative considered is guaranteed to be monotone
inpifd ¢ Dy

For the special case of linear functions a;;{p) and b;(p) the
matrices -y and 7 are constant.

As in the previous section, By can be computed as an outer
solution y of the following system:

AT(ply=ex, pEP (46)

To get a narrow interval vector g, system (46) will be solved by
the method M1 from Section I11. Finally, By is obtained as yT.
Using (45), we determine the estimates Dy, Now we make
the following assumption.
Assumption 2: We assume that each estimate D,
! =1,...,m, satisfies either the condition

Dy 20 (474)
or the condition

Dy <0 (47b}

On account of inclusion (45) the fulfillment of Assumption 2
guarantees that xy is monotone with respect to each parameter

" p;. Now, we define two vectors Q("‘) and 7'*) as follows:

fk):{&- D20,y (48a)

BOF\F, ifDu <0
[P fDw20
PUO= g, Du<0)

The exact solution z}, of system (12)-(1d) can be found using
the following theorem.
Theorem 2: 1f Assumption 2 holds, then the kth component

* —h

z} = (z}.T}) of the exact solution z* is determined as follows.
1) z} is equal to the kth component of the solution of

1=1,....:m.  (48b)

A(p®)z =5 (™). (492)
2) 7} is equal to the kth component of the solution of
A (p(*‘}) c=b (;—J“) (49b)

where the vector E(“ and p*) are determined according
to (48a)-(48h).
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The theorem follows directly from the above considerations
about the monotonicity of du/dpt!).

On the basis of the aforegoing we have the following proce-
dure for determining one component z; of the exact solution
x*. Before initiating the procedure, however, we solve system
(28) to gel an outer solution =" of (1a)-(1d).

Procedure 3: For a given k, solve system (46) using method
M1 to find the interval vector By, By (d44) compute Dy, | =
1,...,m. Check conditions (47}. If all of them are satisfied,
determine the two real vectors %) and 7*) using (48a)-(48b).
Finally, solve systems {49a)—(4§b) to get the lower end-point
and the upper end-point T}, of the kth component x}, of the exact
solution 1o system (ka)}-(1d).

In some cases, it is possible to determine z, even ifynot all
conditions {47a)-(47b) are satisfied, that is if Procedurd 3 is
not applicable, Indeed, let (for a fixed &) I; denote the set of
those indices { for which either (47a) or {47b) holds while /5
denotes the set of indices { for which (47a)~(47b) is violated.
‘Using (482)-(48b) in which now [ € I}, we can determine those
components of the vectors p and 7 which are guaranteed to take
on end-point values. Thus, each vector can be partitioned into
two parts as follows:

p= (z(”'pm) (50a)

or

r=(5".p?) (05)
where only the components pgz), l € I of pfz) are allowed
to take on their values within the corresponding intervals p;
forming the interval vector p‘®. Let the index set [; have
m; members and [z have mp members. Since according to
{502)—(50b) the first m; components of p are fixed to end-point
values it is seen that the original interval vector p has been
reduced to a new mo-dimensional interval vector p(¥ whose
components are p; with{ € Tz,

We first consider partition (50a). We shall present a procedure
for determining the lower end-peint g3 of z3.

Procedure 4: For a fixed &, find the cuter solution x of the
following modified system of type (la)—(1d)

A (B(l):Pu}) r=b (2(1)';](21) . PP ep®.  (iw

Also, find the outer solution ¥ of the modified system
A(@”m@0y=ck

to get the corresponding interval vector Bj. Thus, we can
compute by (43) the elements Dy, { € I and check the mono-
tenicity conditions (47a)-(47b). Now we assume that these
conditions are fulfilled. Using (48a) we find the reduced-sized
vector p@ whose components are pi”, 1 € . Finally, Zhy, 15
computed as the kth component of the solution of

4 (Bm‘g(z)) r=bh (2(1),2(2)) )

We next present a procedure for determining the upper end-
point Ty, of x.

Procedure 5; It has, essentially, the some structure as Pro-
cedure 4. Now we solve systems (51a)~(51b} in which P s

(51b)

(32)
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replaced with 3‘7“). Thus, we compute the elements Dy corre-
sponding to (5, p®)). Once again we assume that the mono-
tonicity conditions (47a)-(47b) are fulfilled. Using (48a)-(48b)
we find the real vector 5(2) whose components are ;‘6t2 A€ I,
Finally, T}, is computed as the kth component of the solution of

A (}-3(1),5(2}) v =b (},—)(1),1—,(2}) _

The above approach to computing zj will be referred to as
method M3,

Method 3 can be used only if both Procedures 4 and 5 are ap-
plicable. If, however, the monotonicity conditions (472)-{47b}
are not fulfilled for all components of p'®, a new attempt can
be made to determine z}. With this in mind, we treat p'*) as a
new reduced-size parameter vector. We then partition the new
p'2} into two parts and apply once again method M3, This new
computational scheme will also be referred to as method M3.

Method M3 is also applicable in the general case of nonlinear
relation (2). Thus, for function (7) we have once again to appeal
to formula (43) where, however, all real variables are to be re-
placed with their interval counterparts. Afterwards, we employ
Procedures 4 and 5 that have been modified accordingly.

(53)

VI. NUMERICAL EXAMPLE

The new methods will be illustrated with the following ex-
ample. The linear AC circuit considered [11] is shown in Fig. 1.
The nominal (center) values of the interval element parameters
are

RE=10Q, i=1,...,5 (54a)
Cce=2- 1071F, Ci=C(Ct= 1074F (54b)

while the fixed quantities are
w=10%s"% J=10"*A. (54c)

The TA problem to be solved consists in finding the outer,
inner, and exact solutions related to the real part V' of the output
voltage V5 for several values of the tolerances on R; and €.
Thus, the TA problem considered here is of the type (1a)—-(1d)
and (6).

The numerical experiments are done in a MATLAB environ-
ment on a 400-MHz Pentium II PC. The interval arithmetic op-
erations are implemented using the toolbox INTLAB. For space
limitation, the numerical resulis obtained will be reported to
only four decimal places.
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A. Outer Solutions

Unlike the algorithms using real (complex) calculations, the
results obtained by interval algorithms depend on the system
describing the problem on hand. Thus, the nominal value of VV
will be the same notwithstanding whether the system of equa-
tions used is set up by nodal analysis, joop analysis or in tableau
form. Tt will be shown that the result for the outer solution, how-
ever, is different depending on what type of analysis equations is
employed. For the purpose of comparison three types of system
of equations will be considered.

System S1: This is a system of equations of the type used in

"[10] or [6, Ch. 3]. It consists of 2n = 2(n’ + m') equations

where n' and m’ is the number of unknown nodal voltages and
branch currents, respectively

Ar=b (552}

and the interval entries lie only in the first 16 positions along the
main diagonal of the coefficient matrix A. The interval coeffi-
cients are dependent since

@ = Tipm. &+ 70 = P P € P i=1....,m. (55b)
For the circuit analyzed n’ = 4, m’ = 8 son = 24 and
p, = R = R + t [~ RS, RS (56a)

where t is the tolerance chosen and [— RS, Rf] is a symmetric
interval

p, =X, i=6738 (56b)

Bi=wCi, Bi=Df+!¢ [-B{,Bf]. (56¢)
The real part V of the output voltage is represented by the com-
ponent z 9 of the real vector z.

System S2: This is the so-called hybrid system of equations
[11]-[13]. Tt has the same structure as system 31, i.e., the in-
terval dependencies are again given by (55b}, but now system
(55a) has reduced size involving n = 2m’ equations. For the
circuit studied n = 16,

p1 =G1, p2 = Bs, p3 = Ga, ps = G2
P3 ZR-I-. }J4=R5..., p?:XT, ptg:Xs (57)
and G; = 1/R;. Now V is given by 3.

System §3: In this case, system (55a) is set up using nodal
analysis and involves n = 2n’ equations. Now

a;;=zaukm, Lj=1l...,n (38a)

where a;jx can be 0, +1 or —1. For the circuit investigated
n = 8 and

pr =G, k=1,...,8 (58b)
pyx =B, k=6,7.8. {58¢)

The output variable V' is given by x3.

We first compare the outer solutions for system S1 obtained
by the present method M1 and Hansen’s method for two values
of the tolerance ¢. Although a better version [17} of Hansen’s
method has here been used than that employed in [12] and [13).

TABLE I
COMBARISON OF THE OUTER SOLUTIONS V' OBTAINED BY THE
PRESENT METHOD M1 AND HANSEN'S METHOD

Present method M1 1 Hansen's method

TR V) T (s) BT V) (5]

005 =] 14 {01760, 0.4567] 006 | [O.0115. 05310] | 006

0 51

[0.2157, 0£783] | 006
i _

2 L [-0.0530, 0.6837) 006

TABLE 1
DaTa 0% V' QBTAINED BY M1 FOR SYSTEMS S1, 52, 83
) System n P iv) s
0.65 sl 24 [0.1760, 0.4567] ;  0.06
0.05 82 16 [0.1787, 0.4477} 0.03
0.0 S3 8 (61421, 0.4891] 0.06
ol Y T [-0.0338. 0.6837) 0.06
o 52 16 [-0.0316, 0.6350] 0.06
ol 53 8 [0.4050, 10273] | 006

the comparison of the results obtained by the two methods and
listed in Table 1 shows that the present method outperforms
Hansen's method. Indeed, the widths of the intervals V' ob-
tained by M1 are smaller as compared to these corresponding
to Hansen’s method. These results confirm the theoretical pre-
diction since, unlike Hansen's method, the present method ac-
counts for the dependencies between the elements of the system
of equations employed. At the same time, both methods require
the same computing time ¢,

In Table [, we present data on the outer solutions V' for two
values of ¢, obtained by the present method M1 using systems
S$1, 82 and 83. It is seen that for both values of ¢ the outer solu-
tion is the narrowest if system S2 is used while the computation
time is practically the same.

. B. Inner Sclutions

The inner solutions V* for V" are obtained by Procedures |
and 2 (method M2). Table I1I presents data on the width of V",
the total number of iterations /N needed by both Procedure 1 and
Procedure 2, and the execution time ¢ corresponding to the case
where the system of equations used is S1.

The same intervals V” are obtained when systems 82 and 53
are used.

To assess the effectiveness of the present method, we also
found the inner solutions for V using the Monte-Carlo method.
Table TV lists results corresponding to two values ¢ and two
values of the number of trials V.

The comparison of the results for V* and ¢ in Tables Iil and
IV clearly shows that the present method M2 is supetior to the
Monte-Carlo method. Indeed, method M2 provides wider inter-
vals V" and hence tighter approximations to the exact solutions
V*. At the same time, it requires less computation time although
M2 was applied to system S (n = 24) while the Monte-Carlo
method was implemented using the smaller system 83 {n = 8).

| §
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TABLE Tl
DATA ON THE INNER SOLUTIONS V' OBTAINED BY THE PRESENT METHOD M2
t System n ¥ y) N T(s)
0.05 S1 24 [0.2122, 0.4340] 5 012
0.1 st 24 [0.1196, 0.5630] | 35 012
TABLE IV
DATA ON V7' OBTAINED BY THE MOTE-CARLO METHOD
! System n N, ¥ {V) 7{s)
0.05 $3 B 1000 10.2457, 0.3931) 1.43
005 T777s3 8 10600 (02354, 04002 | 1433
ol 3 | 8 00 | [0.1736. 0.4591] 1.43
ol 53 3 10000 [0.1651, 0.4900] | 14.39
TABLE ¥
Tw0-SIDED BOUNDS ON THE ENDPOINTS OF THE EXACT SOLUTION V'~
" Methods Bounds on e Bounds on ¥ * s)
M1+ M2 [0.1787, 0.2122] [0-3340, 0.4477| 017
TMCTH [01t15, 0.2457) [0.3931, 0.5310] 149

The inner and outer solutions obtained by methods M2 and
MI, respectively, provide tight two-sided bounds on each end-
point V* and V" of the exact solution ¥*. Table V lists data on
these bounds (corresponding to ¢t = 0.03, §2 and N, = 1000)
obtained by methods M1 and M2, on the one hand, and method
Monte-Carle (MC) and Hansen's method (H), on the other.

C. Exact Solution

Using method M3 (Procedure 4 and 5), the exact solution Ve
has been obtained for all systems of equations when { = 0.05,
Table VI lists results for the endpoints of V*, the total number
of itetations NV {corresponding to the determination of both 17
and V') and the required computing time &.

If, however, { = 0.1 the exact solution has been reached only
for S1 and §2-—Table VII

Method M3 is inapplicable with system 83 since for ¢ = (0.1
none of the monactonicity conditions (47a)—(47b) is satisfied.
However, if t is reduced to ¢t = 0.07, the following result has
been obtained (Table VIII).

In this case, method M3 reaches for five iterations only the
exact lower endpoint ¥*, It cannot converge to the upper end-
point ¥ since after 5 iterations conditions (47a)—(47b) remain
unsatisfied for! = 4 and ! = 5, However, as is seen in the table,
the method provides a good two-sided bound on v

D. Analysis of the Numerical Results

The comparative analysis of the numerical results obtained
can be summarized as follows. The conservatism of the outer
solutions depends on the type of system of equations used. Ac-
cording to this criterion, the best results {narrowest solution
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=% TABLE VI
DATA ON THE EXACT SOLUTION V™ QOBTAINED BY THE PRESENT
METIIOD M3 FOR ¢ = 11.01)

f Systern " p* N s}
5l 24 7 (02123, 04340 ‘- 0.22
0.05 52 16 [02i22. 0.4340] 4 022
$3 8 [0.2122. 0.4340) 6 032
. TABLE ¥1I
DaTa ON V'* OBTAINED BY M3 FOR ¢+ = (.1
r Systern n [ a4 N Ts)
s 24 [0.1196, 6.5630] 7 | 044
0.1 52 16 (01196, 0.5630] 5 | 027
TABLE VI
Data o8 V* OBTAINED RY MIFOR 1 = 0.07
f System " pe Bounds on F * N s}
w07 | s 8 ll 01736 | 04709 F0.0241 | 10 0.5%
|

intervals) are obtained when system S2 is employed. This is
seemingly a valid conclusion for low- and medium-size circuits.
However, for large-size TA problems, it is hoped that system 53
will be preferable. Further numerical experiments are needed to
make a decision on this peint. The exact solution is obtained
with least computational eftort if, again, system S2 is used. It
should, however, be verified if this conclusion remains valid for
lurge-scale circuits,

Tt should be also stressed that at least for medium-size circuits
the numerical efficiency of the present approach seems (o be
superior to that of the Monte Carlo method. It is expected that
this conclusion remains valid also for large-scale circuits.

A final important remark is to be made. It should be noted
that in all experiments the inner solution is in fact equal to the
exact solution, 1.e.,

=z (39)

(cf. Table T11, Tables V1 and VII). 1t is belicved that the equality
(59) is a generic characteristic for a large class of linear elec-
tric circuits. The derivation of a simple criterion establishing
the validity of (59) and circumventing the verification of the
costly monotonicity conditions {47a)-(47b} would substantially
improve the overal! efficiency of the new approach to solving
the TA problems.

VII. CONCL.USION

A general framework (la}~{(1d) and (2) for treating
worst-case TA problems has been considered. The linear
algebraic system (la)-(1d) has elements that arc nonlinear
functions of a set of parameters belonging to given intervals.

A simple method M1 for determining an outer solution to the
TA problem considered has been suggested in Section I11. Tt is
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based on Theorem 1 and reduces essentially to setting up and
inverting an n x n real matrix and solving a system of n real
linear equations (28), n being the size of the original system
(1a)—~(1d). The method is self-validating: it is applicable only if
the solution 1o system (28) is positive.

In Section IV, an iterative method M2 (Procedures 1 and 2} 1s
suggested which permits to determine an inner TA solution.

A more involved method M3 (Procedure 3 or Procedures
4 and 5) for computing the exact interval solution of the TA
problem considered has been presented in Section V. It is based
on the use of Theorem 2 and method M1. The latter is applied
to compute tight enclosures Dy of the derivatives diy/dpy
according to formula (44). If all derivative monotonicity condi-
tions (47a)—~(47b) hold, method M3 is guaranteed to determine
the exact solution. In some cases, the method can provide
the exact solution even if not all monotonicity conditions
(47a)—(47b) are satisfied.

A numerical example has been solved in Section VI. It il-
lustrates the applicability of the above methods to determining
an outer, an inner and the exact solution to TA problems. The
experimental results seem to show that at least for low- and
medium-size circuits the present approach is superior to the
Monte Carlo method as regards both accuracy and computing
time. Further investigations are needed to decide whether the
same conclusion is valid in the case of large-size circuits.

The three methods suggested can be extended (o encompass
TA problems related to transients in linear circuits. This gener-
alization will be presented in a subsequent publication.
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A general interval method for tolerance analysis

Lubomir Kolev, Ivo Nenov

Abstract - In this paper, an interval method for tolerance
analysis of electric circuits is proposed. It is rather general
and can be applied to solving tolerance problems both for
linear and nonlinear circuits, The problems to be solved can
be either of the deterministic, worst-case type (with
independent or dependent parameters) or of the probabilistic
type {when there are statistical dependencies between the
parameters). Under 2 computationally verifiable condition,
the method suggested guarantees to yield an interval solution
that encloses the actual set of solutions te the specific tolerance
problem considered. Numerical examgples related to the worst-
case tolerance problem for nonlinear dc circuits seem o
indicate that the present method has attractive
computational performance.

Index Terms - Tolerance analysis, interval analysis.

[. INTRODUCTION

NTERVAL methods for solving various types of

electric circuit tolerance analysis problems have been
in existence for over twenty years [1]-[9]. The major part
arneng these treats the worst-case (deterministic) telerance
problem for linear circuits. The linear tolerance problem in
probabilistic setting is considered in [5], § 2.5. Papers [7]
and [8] address the worstcase tolerance problem for
nonlinear clectric circuits. The known methods, however,
differ considerably from one anather depending on the class
of circuits analyzed (linear or nonlinear), type of problem to
be solved (in deterministic or probabilistic serting) and the
type of problem formulation used {as a global constrained
optimization problem or in the form of an interval lincar or
nonlinear system of equations).

In this paper, a general interval method for solving any
of the known tolerance analysis problems for beth linear
and nonlinear circuits is suggested. It is based on a
medification and generalization of a methed propesed
recently in [8]. Unlike [8] where the nonlinear worst-case
tolerance problem was analyzed, now the system of
equations describing the tolerance preblem considered is in
rather a general form

Sflx,p)=0 (1a)
PE P (1b)

The authors are with the Deparument of Theoretical
Electrotechnics, Faculty of Automatica, Technical University of
Sofia, 8 Kliment Ohndski Str., Sofia 1000, Bulgaria

{e-mail : Ikolev@vmei.acad.bg ).

where f a nadimensional vector functiom, x is a »-
dimensional output variable vector, p ts a m-dimensional
parameter vector and p is the comesponding interval
vector (box). It is assumed that a pair (x°,p")
corresponding to the nominal solution is known such that
S(x°, p®)=0 with p®€ p; p° is usually the center
of p.
The solution set §,(p) of (1) is the set

S,(p)y={x:f(x,p)=0, pe p} @
The interval hull of S,(p) will be denoted X *; any

other interval X such that x* C x will be referred to as
an interval {outer) bound on S, (p). In the present paper,
the tolerance problem considered is equated to finding a
bound x on § s - A method for computing x 1s suggested
which is based on an alternative linear interval enclosure of
non-linear functions in a given box [10] - [12].

To simplify presentation, it is henceforth assumed that n'

= p (number of equations equals number of output
varizbles).

I1. PRESENTATION OF THE METHOD

It is known that a continuous function g {=;, ..., 5y) can
be enclosed in a box ; by the following affine linear interval
function

Lx(:)=ia1':j +b 3
j-l

(@; are real numbers and & is an interval) having the

property

g(z)e L, (z), zez (4

Simiiar formulae are valid when g is an r-dimensional

function. Now

L (z)=Az+b, zez %)
(A is a real matrix and & is an interval vector) and for the
new notation, property (4) is also vaiid. Constructive
procedures for determining 4 and & are suggested in [10]-
[12]. On account of (5) the linear interval enclosure of (1)
in the box z = (x, p) will be

Le(x p)=Ax+ A’ p+bxex ,pep (6)

3719
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In this section, a method for determining an outer bound
x on the solution set S, (p} of (1) is presented. It consists

of two stages: during the first stage, a “good” starting box
x' is determined; the second stage aims at improving x* by
making it narrower.

Stage 1. Let po be the center of p. First, the nominal
solution x° is found by solving f(x,p°)=0. Next a

narrow box x® of width £, centered at x° is introduced
and, using(6), system (1) is enclosed in z° by the linear
interval form

Lf(xo,p):-A;X+A;p+b0 (7a)

xex’, pep (7h)
Now, (7a) will be used as a linear approximation of (1) in a
larger box ' = (x' , p). Following [10] - [12] the

component x' of z'is determined in the following way

x'=—(45)" b, (8a)
where
by=Aflp+b, (8b)

The first stage can be implemented in two different ways
using the following two procedures.

Procedure 1. It is initiated by jutting x°= x' and going back
to (7).

Procedure 2. It starts as Procedure ! by computing x'
using (8). At this point, x' is renamed x’and the newx' is
found by the ynion

x'=x'ux® . (8¢)
Next the iterations continue (as in the previous procedure)
from (7) with x°=x'.

It is assumed that Procedure | (Procedure 2) converges
10 a stationary interval vector (box) x° .

In practice, the respective procedure terminates
whenever the distance between two successive iterations x'
and x* becomes smaller than an accuracy E,. This
approximate stationary box denoted as x* differs, in
general, from x' and may be smailer. Therefore, x* is
constructed in the following way

x' =x?+(1+£&,)[-R,R] 9)
where R is the radius of x* and e, 0.

Stage 2. After the box x* has been determined by (9)
we proceed to the second stage of the present method. Now
we wy to reduce x* using the following procedure.

Procedure 3. Let % = x' and construct the
corresponding linear approximation of f(z, p) in (x°, p)
using (7). By (8) find the corresponding box x*and denote
itx'. Next,anew box x' is introduced by the intersection

'=x'nx’ (10)
As before, the iterative process is initiated by putting x° =
x' and going back to (7). It is terminated when the distance
between two successive boxes becomes smaller than an
accuracy €;. The corresponding stationary box denoted x
is, in fact, the outer solution of the corresponding tolerance
problem described by (1).

The distance used in the stopping criterion in Procedurss
1 to 3 has been chosen as

d=max{jw(xj)|—|w(xf[} an
where w stands for width,
The second stage of the present method permits to

computationally test its validity. Indeed, let x™ be the box
obtained at the & th iteration of Procedure 3. If the condition

x'* < int(x*) (12a)
(int denoting interior) is fulfilled for some k 2 1, then
L ]
5 fEX Ccx {12b)

L. the outer solution thus found contains S; and its interval
hull, The proof of (12} (along with other theorerical aspects
of this paper’s method) will be pubiished elsewhere.

[t is seen that the method sugpested above can be
implemented as:

a) algorithm Al which is based on Procedures 1 and 3;

b) algonthm A2 which uses Procedures 2 and 3.

Experimental evidence seems to indicate that algorithm
A2 requires less iterations than algorithm Al to solve the
tolerance analysis problems considered.

It should be noted that besides being more gencral, the
present method differs from the method of {8] also in the
way each iteration of Procedures | to 3 is carried our. In [8]
this is done by approximately solving a linear interval
system where all its clements are interval. The
correspending linear interval system in the new method is
much simpler (only the right-hand side is interval) whose
exact solution (within round-off crrors) is computed by (8).
This explains the better computational efficiency of the
present method which is confirmed by the examples
considered in the next section.

III. NUMERICAL EXAMPLES

In this section, two worst-case tolerance examples
illustrating the applicability and efficiency of the present
method are given. The examples have been solved using
algorithms Al and A2. The algorithms were programmed
using the algorithmic language C™. The linear interval
enclosures (7) were generated automatically by a procedure
that implements the approach suggested in [12].

Example 1. In this example, the system of equations
(1) is:

10%(&™ —1)+ p x, 1672, +0.668%, ~80267=0

3
198109 (¢ "2 ~1+0.6622) + pyxy +0662%; +4053520

107 (% ~L}+x; —x3 + pyxy —6=0

(13a)

p=(py. Py. p3)e ([0.6020,0.7358], (13b)
[1.2110, 1.4801], [3.6, 4.4])

and models a dc electric circuit containing a transistor, a
diode and two resistors [9]. We consider the worst-case
tolerance problem associated with (13): find an interval
(outer) solution x to (13). In this example, the output vector
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L |
15 X = (¥, X3 X3} and the parameter vector is p=(p. p;, gy = Viy — Vi3 (18b)
p3). We chose p0 as the center of p given in (13b). The and a diode characteristic
comresponding nominal solution x* was found with iy = 10"9(e3s“ —l) {19a)
accuracy € = 10 ™ using a new nonlinear equations solver with
(implementing ideas from [11] and [12]): U=V te —v (19b)
x® =(0.5555, -3.518, 0.4685) (14) S TTsTe . _ s 420
. . . All the remaining inear resistors have a o
Sl:i::}suks in (1) are, bowever. given only to four decimal tolerance, i.¢. their values lie within the interval [98, 102]
* Application of algorithms Al and A2 with gg=¢, = g, = £ and deﬁn;l the pla;amctcrmb:;r‘:. Ti'lhc com;:so_nlcn‘lzs of t111;
10 = vyielded the following results, respectively, for the ou;p:: vang c"l':: ”gc 13 HCIGCT?.' i ’"".:_l
intervalsolution of the tolerance problem considered: and the node volages v1Z, v13,..., vib, Again, We consicer
x=([0.5401 0.5682], [-3.8926 —3.1153] the worst—case tole_rancc analysis problem associated with
' " - ’ (15)  this modified circuit.
[0.3483 0.5387) A numerical difficuity arose in finding the nominal
solution x° for this example. It is due to the well-known
x =([0.5402 0.5680] [-3.8910 —3.1194), overflow problem caused by the exponential diode
(16) nonlinearity. The overflow was overcome by scaling all
[0.3473 0.5331] variables by a factor of 0.01. Afterwards x° was found
Fer algorithm Al, € ;= 0.05 and the fulfiliment of (12a)  successfully with accuracy € = 10 ~° using the new
was achieved at k=1 of Procedure 3. For zlgorithm A2 nonlinear equations solver. The initial box x°, where x° was
we chose €, =0 and nevertheless (12a) was satisfied  searched for, was chosen pretty wide: currents were set
already at & =2 of Procedure 3. Thus, both bourds (15)  between (-1) and 1 A and node voltages between 1 and
and (16) are guaranteed to contain the solution set of (13). 100 V. A unigue nominal solution is:
where
TABLE 1
Algorithm | Algorithm 2
Stage | Stage 2 Total Srage ! Stage 2 Total
M 27 8 - 35 13 7 20
The numbers of iterations r yrresponding 1o the two 0 _ 037 39] N
algorithms are listed in Table 1. It is seen that algorithm A2 * (0.376, 0. 0.016, 0272,
requires less iterations as compared to algorithm Al. 0.136, 0.360, -0.070, 0.337, 0.097, (20)
The same example was solved ia [8] by an algorithm 0.167, 0.263, 62.36, 60.88, 33.72,
similar in structure 1o algorithm A2 {(however, as mentioned 16.69, 26.35)
in the previous scction, each iteration of both the first and ) 5 . o .
sccond stage of the algorithm is associated with the solution :\'.?aslu:::f:;:dinait}f: s:)‘::aliszlmer?:r:iiz::g tc?r‘\?:lg f cqua[ulc;;
of a corresponding linear interval system and requires more we tenort tion. not s%c 1 t_n . form 1
computation than algorithm A2). The following bound was (we Feport equarion, not system cvalua 101S Since not a
obtained cquations may be required per iteration). Using algerithm
x=([0.5103, 0.5778], (4352, -2 6756] Al, the interval (outer) solution around the nominal
’ T ’ [0 3485‘ 65898])‘ (17 solution x° was computed after 7 unions (stage 1) and 4
: M : 1 1 - = - -5 =
It is to be stressed that the bound (17) is more }rrzltlcrslcrg:onsd{st_age 2,) fo‘;eg_ hEI 3’ ,10 r al}dﬂslz 0.05.
conservative as compared to {13) and (16) and ar the same N bcl endpoint x anb Tg t endpoint x= of the output
time takes more iterations to be reached: total number of ~ Y3T1abie vectorare given below:
?tcrations 166 (85 iterations for the first siage and 81 xl = (0366, 0380, 0.07, 0.260, 0.123,
Merations for sccond stage). 0350, -0.079, 0327, 0.089, 0159, (21)
Example 2. This example is a modification of Example 0.254, 6136, 59.84, 3293, 1597, 2548)
3.2in [5). The linear dc circuit of [3] is transformed into a
npnIincar circuit by replacing the linear resistors ry and r; in x' = (0.388, 0404, 0.027, 0.27%, 0.157,
::cgl;ji.clciif‘zi:;F:tizonl:ncar elements having respectively: 0.369, —0.063, 0.350, 0.104, 0.176, 22)
0.273, 63.28, 61.70, 34.74, 17.48, 27.22)
i =107 (25u% 10542 +11.8%) (18a) where as in (20) only four digits for each component are
given,
381




IV, CONCLUSION

An interval] method for tackling various classes of
tolerance analysis problems (lincar and nonlinear,
deterministic with independent or dependent parameters,
probabilistic) has been suggested. The method is rather
general in its approach and equates the original tolerance
problem to that of finding an outer interval solution x to the
nonlinear system of equations (1} describing the tolerance
problem considered. It is based on a recently suggested
linear interval enclosure (5). If the computationally
verifiable condition ([2a) is satisfied, the method
guarantees that the obtained solution x is really an outer
solution, i.e. the inclusion (12b) is fulfilled.

A computer program implementing the method has been
developed in a C™ environment. The numerical results
obtained so far (including data not reported here) seem
rather encouraging.
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Abstract, This paper presents an iterative method for computing an outer interval bound on the solu-
tion set of parumeters-dependent systems of non-lineur equations for the case where the parameters
luke on their valugs within preset intervals. The method is based on a recently suggesied allernative
lincar interval enclosure of factorable non-linear functions in a given box, It comprises two slages:
during the first stage, a relatively narrow starting box is determined using an appropriate inflation
technique while the second stage aims at reducing the widih of the starting box.

Two algorithms implementing the method have heen programmed in o C++ environment. Numer-
ical exumples scem to indicate that the second algorithm is rather efficient computation-wise.

‘The method is self-validating: the fultillment of a simple inclusion rule checked during its second
stage ensures that the interval bound thus found is an outer approximation to the solution set of the
perturhbed system investigated.

1. Introduction

The paper addresses the well-known problem of bounding the solution set of per-
turbed (i.e. parameters-dependent) systems of non-linear equations (e.g. [1]-[3],
[101-[12]). More specifically, let the system considered be

flx,p) =0, (1.1a)

PEP. (1.1b)
where f: U c R" x R", D R”, and E < R™ are closed and connected sets with
D x E c U, and p is an m-dimensional interval vector in E. (For simplicity of
nrotation, following [4], [8], throughout the paper interval quantities will be denoted
by bold face letters while ordinary font letters will stand for real non-interval
quantities,)

It is assumed that a pair (&, p¥) € U is known such that f(x". p") = O with

p" € p. p¥ is usually the center of p. The solution set S;(p) of (1.1) is the set

Sip)={x: fle.p)=0, pep}. (1.2)

The interval hull of §;(p) will be denoted x*; any other interval x such that x* c x
will be referred to as an interval (outer) bound on S,{p). The width of x {or x*)
serves as a4 measure for the sensitivity of the solution x(p) when p varies around p?

inp.
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A method for determining x* is suggested in [3]. It reduces to globally solving 2n
constrained optimization problems. As it is rather time-consuming its applicability
is limited to systems of low size n. Most often, a tight interval bound x is sought
(e.g. [10]-[121). In [2), [3], {10}412] use is made of either an interval extension
J(x*,p) of the Jacobian to compute x or x* (x* > x) of (1.1) or an interval slope
matrix.

In the present paper, we suggest a new approach to tackling the problem of
finding a bound x on S;. It is based on an alternative linear interval enclosure of
factorable non-linear functions in a given box [5]-[7].

The paper is organized as follows. Section 2 presents the basic approach adopted
and the main results thereby obtained. The new method for computing the bound x
is presented in Section 3. Two numerical examples illustrating the applicability of
the method suggested are given in Section 4. The paper ends up with final remarks
in Section 5.

2. Main Results

Let g : z € RY — R be a continuous factorable function. It is known {7] that g can
be enclosed by the following affine linear interval function

o
Liz) =) agzj+b _ (2.0

i=1
(where «; are real numbers and & is an interval) having the property
8(2) € Ly(z), Zez (2.2)
Similar formulae are valid in the case where g : z € RY — R". Now
L{z)=Az+b, 1€z, (2.3)

where A is a real matrix and b is an interval vector; for the new notation, property
(2.2) is also valid. Constructive procedures for determining A and b are presented
in [5]-[7].

Referring back to system (1.1), let x¥ be a box large enough to contain Sy(p),
x™ and the bound x associated with a given p. The main result of the section is
formulated in the following theorem.

THEOREM 2.1. Let x* < x¥ and x = x*. Furthermore, let
Lix* . p)y=A"x+A"p+b. xex', pep (2.4)

be the linear interval enclosure of (1.1) in z = (x*,p). Alsa, let §;(p) denote the
solution set of the linear interval system

Ax+A"p+b =0, pep (2.3)



Then
Sip) c 8;(p) (2.6}

Proof. Denote (2.4) equivalently as

Liz)=Az+85, 7€z, 2.7
where z = (x, p). On account of the inclusion property (2.2)

flzy=Az+b, Vziez (2.8)
If y e zis a zero of (1.1}, then f(¥} = 0. Hence from (2.8)

OeAv+b 2.9
Let b = [b. b]. The inclusion (2.9) can be written as

0<Av+b (2.10a)
and

0> Av+b (2.10b)
or equivalently

0=Ay+b,  beb. (2.11)
Returning back to the components AY and AP of A

A'x+Ap+bh=0, pep, beb (2.12)

So, if x € S;(p}, then there exists a pair (x, p) satistying (2.12). But (2.12) defines
the solution set §; (p) of (2.5). Hence x € S{p) implies x € S, (p) which completes
the proof. O

Itis easily seen from (2.12) that the solution set S; (p} is a convex polyhedron.
Using elementary set-theoretical considerations, the following corollary can be
readily proved.

COROLLARY 2.1. The solution set S(pY of (1.1) is also contained in the intersec-
Hon

Spp = S;(p) A x". (2.13)

Let Ay denote the interval hull of Stp. Then Ry is a bound on the selution set

$¢(p).
We can find a slightly wider bound than k) in the following way, Rewrite (2.12)
in the form

Ax+b =0, b =b, (2.14a)
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where
b =Ap+b (2.14b)

Using the same argument as in Theorem 2.1 and Corollary 2.1, now we have the
following results.

THEOREM 2.2. Let x* < x*, x < x* und let S¢(b") denote the solution set of (2.14).
Then

S/(p) < SL(b). (2.15)

COROLLARY 2.2. The solution set S{{pyof (1.1} is also contained in the intersec-
tion

Sw(p) =56y nx’. {2.16)

Let ki be the interval hull of Sy ; then &> is another bound on the solution set
of (1.1). It follows from elementary set-inclusion considerations that

h:ohy. (2.1

It is casily seen that iy or A, can be determined by solving 2n linear programnung
problems associated with (2.12) or (2.14), respectively. Such an approach, however,
appears to be rather costly for larger n. Therefore, a slightly wider but by far less
expensive bound A3 will be suggested now. It is based on the following theorem.

THEOREM 2.3. Let x* cx', x cx" and

hy=—(A0"'p". (2.18)
Then

S{p) < ha (2.19)
and

hy c hy chs. (2.20)

COROLLARY 2.3. The solution set Si(p} of (1.1} is also contained in the intersec-
tion hy nx’,

The proof of the above theorem and corollary follows directly from Theorem 2.2
and Corollary 2.2,

Unlike #, and k,, the bound x = k3 is determined in a comparatively much
cheaper manner by just one single inversion of the real matrix A* and a subsequent
multiplication by an interval vector.
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Remark 2.1. The bound Ay can be improved if rather than using (2.18) 4, is
computed as follows

hy = -Cb— |CA”p, (2.21)

where C is the inverse of A*, The validity of (2.21) follows from (2.12) if (2, 12) is
first premultiplied by matrix C. Moreover, it is easily seen that

hychy (2.22)
indeed, from (2.14) and (2.18)
hy=—Ch — C|A"p]. (2.23)

Comparison of (2.21) with (2.23) and application of the subdistributivity property
leads to (2.22). It should however be borne in mind that formulae (2.18), (2.14b}
require a lesser volume of computation than (2.21) and may turn out to be g better
choice for large-size problems,

Henceforth, to simplity presentation, ounly the cruder bound 4 will be used.

3. The New Method

In this section, we present a method for determining a bound x on the sotution set
Sy(p) of (1.1). It consists of two stages: during the first stage, a “good” starting box
X" is determined: the second stage is based on Theorem 2.3 and aims at improving
x* by making it narrower.

From a computational efficiency point of view the selection of a good starting
box for the second stage of the present method is of great importance. Indeed, if
*° ts chosen too large, the second stage will take too many iterations to converge;
conversely, if x* is not large enough, it might not contain the outer solution x = ki,
as required by Theorem 2.3,

We start by presenting the first stage of the new method. This stage can be
tmplemented in two different ways using the following two procedures.

PROCEDURE 3.1, We choose P’ = p" (0 is the centre of p) and determine
as the corresponding solution of f(x, p). Now a narrow box x¥ of small width g,
centered at x” is introduced and (1.1) is enclosed by the linear interval form (2.4)
inz% = x"p). i.e. we determine

Lix".p) = Ajx + Alp + by, (3.1a)
xXe x“, pep. (3.1b)

It is to be stressed that (3.1) is an enclosure of (1.1) only in z°. However, (3.1a)
will be used as a lincar approximation of (1.1} in a larger box 7' = (x'.p). The
component x' of z' is determined in the following way. First, based on Theorem 2.3
we compute
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<= —(Ap~'b, (3.20)
where
by = AEP + by. (3.2b)

Now the iterative procedure is started by putting x? = x! und going back to (3.1).

PROCEDURE 3.2. It is similar in structure to the previous procedure. The only
difference lies in the way the component x' 1s determined at each iteration. We start
as in Procedure 3.1 by computing x' using (3.2). At this point x! is renamed x” and
the new x' is found by taking the union

x =x nx’, (3.2¢)
Next we let x¥ = x! and the iterations continue from (3.1) as in the previous
procedure.

At this point, we need the following assumption,

ASSUMPTION 3.1. For a given box p Procedure 3.1 (Procedure 3.2) 1s convergent
to ¢ stationary interval vector x* having the property

xtcxt. (1.3)

This assumption seems to be fulfilled most often in practice for relatively small
boxes p and under reasonable requirements (such is given in e.g. [3], [10]-[12]} on
the non-linear function # in (1.1}. The inclusion (3.3} is expected because of the
fact that at cach iteration & before convergence the current approximation Lix'™ . p)
of f(x,p) becomes better and the box x*) larger than L(x*~" p) and x* 1,
respectively.

In practice, Procedure 3.1 (Procedure 3.2) is terminated whenever the distance
between two successive iterations X' and x* ~1 becomes smaller than an accuracy
e1. This approximate stationary box denoted as x“ may be smaller than the stationary
box x*. To facilitate inclusion (3.3). we inflate x“, i.e. we let

f=x{+ (1 + &) -R.R] (3.4

where R is the radius of x and &2 = (.
After the box x* has been determined by (3.4} we proceed to the second stage
of the present method. Now we try to reduce x* using the following procedure.

PROCEDURE 3.3, We let x = x* and construct the corresponding linear approxi-
mation of f(x, pyin (x". pyusing (3.1). By (3.2a) and (3.2b) we find the corresponding
box x’. Next, a new box x' iy introduced by the intersection.

x'=x naxl (3.9

Now we letx” = x' and the iterative process continues from (3.1} Itterminates when
the distance between two successive boxes becomes smaller than an accuracy €.
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The distance used in the stopping criterion for Procedures 3.1 to 3.3 is computed
as the maximum among the absolute values of the differences between the widths
of the corresponding components.

It is seen that the method suggested above cun be implemented as:

a) Algorithm Al which is based on Procedures 3.1 and 3.3;
b) Algorithm A2 which uses Procedures 3.2 and 3.3,

Experimental evidence seems to indicate that Algorithm A2 requires less iterations
than Algorithm Al to solve the perturbed problem considered.

The second stage of the present method permits to computationally test the
validity of inclusion (3.3) in Assumption 3.1. More precisely, we have the following
result.

THEOREM 3.1. Let x* be determined by Procedure 3.1 or Procedure 3.2 using
(3.4). Let x° be the box obtained at the k-th iteration of Procedure 3.3 wi thx' = x*.
if the condition

x® = int(x") (3.6)
(int denoting interior} is fulfilled for some k > 1, then the second stage of the
methad validates assumption (3.3).

Proof. On account of Coroltary 2.3 the solution set S¢(p} as well as its interval
hull x* cannot have points lying outside the intersection Az n x*. Thus, x* cunnot
have points outside x* ~ x¥, Now assume that (3.6) holds for some &. In this case,
x* lies strictly within x* and is therefore encircled by a “ring” (formed by the
difference x* 7 x*) which does not contain points betonging to x*. On the other
hand, x**’ is bound to contain x* by construction, i.e.

x* e x® (3.7)
Finally, on account of (3.7), the validity of (3.6) implies the inclusion (3.3)
x"cx'.
which concludes the proof. O

Remark 3. 1. We can reduce the overestimation of the bound x obtained by the present
method appealing to the well-known technique of partitioning the parameter box p
into a given number N of subboxes p*?, We then apply the method to each subbox
P to get a corresponding bound x'*’, The box x bounding the solution sct of the
original problem is now obtained as the interval hull of the union of all boxes x'*.
Obviously, such an approach is only applicable to problems where the dimension
m of the parameter vector p is small.

4. Numerical Examples

In this section we give two examples illustrating the applicability of the method
suggested. The examples have been solved by both Algorithms Al and A2 with
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Table .
Stage 1 Stage 2 Toal
Algorithm { 9 4 13
N.
" Algorithm 2 6 4 10

£ = € = & = 10—, The algorithms were programmed using the algorithmic
language C++. The linear interval enclosures (2.3) were generated automatically
by a procedure that implements the approach suggested in (7).

EXAMPLE 4.1. The system of equation is

(e—xip —x3 =0
xiipr—x3 =0, (4.1
X2 —x?!(l +.r%) = {,

where ¢ is a constant. In this example x = (x1,x2,X3) and p = (p1.p2). We chose

¢ = 3.25 and p! = 2000, p§ = 1000. The corresponding poiat solution 2" is

£ = (1.083,0.5399, 0.001083). (4.2)
The parameter vector p was chosen to be

p = ([1800, 22001, 1900, 1100]) (4.3

For this simple example, the interval hull x* of the solution set of {4.1), (4.3) can
be easily computed to be (approximately)

x* = ([0.9435, 1.2327], [0.4709.0.6031], 10.00098, 0.001211]). (4.4)

Application of Algorithms Al and A2 with g2 = 0.05 led to the following bound
on {(4.4):

x = {|0.9129, 1.254], |0.4546.0.6182], [0.0009618, 0.001216]). (4.5)

It is seen that the box {4.5) is an outer approximation of the solution set (4.4) of the
perturbed system (4.1), (4.3).

The satisfaction of the inclusion (3.6) ensuring the validity of (4.5) was achieved
for both algorithms at the first iteration of the second stage, i.e. for k = 1 of
Procedure 3.3.

Table 1 lists the number of iterations N; needed to terminate stages [ and 2
of the respective algorithms as well as the total number of iterations for each
algorithm. It is seen that Algorithm A2 requires less iterations as compared to
Algorithm Al.
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Table 2.

Stage | Stage 2 Total

Algorithm ! 27 8 35
Ni
Algorithm 2 13 7 20

EXAMPLE 4.2. In this example the perturbed system is
107935 — 1)+ pix; — 1.6722x + 0.6689%x; — 8.0267 = 0,
198 - 10 %™ — 1)+ 0.6622x; + ppaz + 0.6622x; +4.0535 =0, (4.62)
107%™ — D+x) —xp+pxy- 6=0
p = (p1.p2.p3) € ([0.6020,0.7358], |1.2110, 1.4801], §3.6,4.4]) (4.6b)

and models an electric circuit containing a transistor, a diode and two resis-
tors [9].
Application of Algorithms Al and A2 yielded the following results, respective-

by:

(10.5401.0.5682], |—3.8926, —3.1153], [0.3483, 0.5387]), (4.7)
(10.5402, 0.5680|, [—3.8910, —3.1194], [0.3473,0.5331]). {4.8)

For Algorithm Al, & = 0.05 and the fulliliment of (3.6) was achicved at k = |
of Procedure 3.3. For Algorithm A2 we chose £ = 0 and nevertheless (3.6} was
satisfied already at & = 2 of Procedure 3.3. Thus, both bounds {4.7) and (4.8} arc
guaranteed to contain the solution set (4.6).

The numbers of iterations corresponding to the two algorithms are listed in
Table 2. Once again, as in Example 4.1 Algorithm A2 outperforms Algorithm Al.

Example 4.2 was solved in [9] by an algorithm similar in structure to algorithm
A2 (however, in |9} each iteration of both the first and sccond stage of the algorithm
requires the solution of a corresponding linear interval system) and the following
bound was obtained

x = (]0.5103,0.5778], [--4.3520, —2.6756/, [(.3483, 1.5898)). 4.9)

It is worth noting that the bound (4.9) is more conservative as compared to (4.7)
and (4.8) and at the same time took more iterations to be reached: total number of
iterations 166 (85 iterations for the first stage and 81 iterations for second stage).

5. Conclusion

A method for tackling the problem of bounding the solution set of a parameters-
dependent non-lincar systems of equations (1.1) by an interval box x has been
proposed. The method is based on a recently suggested linear interval enclosure
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(2.3) of the non-linear system involved. This approach is rather general since (2.3)
can be constructed for the broad class of factorable functions, containing functions
that may be only continuous.

The theoretical basis of the methed is provided in Section 2: Theorems 2.1 10 2.3.
The method proper is presented in Section 3 where two two-staged algorithms are
suggested. According to Theorem 3.1, their second stage (Procedure 3.3) involves
the computattonal verification of the validity of the algorithms.

The new method is implemented as a computer program written in C++. Numeri-
cal evidence seems to indicate that it provides cheap and tight bounds on the solution
set of the perturbed non-linear systems investigated. These bounds are, however,
not rigorous since the present implementation of the method does not account for
round-off errors. It is the intention of the authors to develop an algorithm and a
computer program which will implement the method with complete computational
rigor, thus providing infallible outer bounds on the perturbed solution set.
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Abstract

In this paper. a new iterative interval method applicable to
both de and ac worst-case tolerance analysis of non-linear
cirewls 1s presented Bessdes being more peneral. it differs
trom other known methods 1 the way the lincanized system
anising  at each deration 15 set wp and  solved
(approximately}. Another distinction is the fact that now the
initial linear tolerance problem {starting the iterations)
cormesponds to a circuit whose non-linear  resistor
chacacteristics are linearized around the corresponding
nomuinal dc operating point of the original non-linear circuit
studied.

1 Introduction

Interval methods have praoved a reliable tool for solving the
worst-case lojerance analysis problem for Jincar circuits {1]-
[6]. The known methods are based on the following two
basic approaches: (i) determining the range of a non-lincar
function relating the output variable to the interval
parameters [1]-[3.Ch.2] and (i} solving a corresponding
system of linear equations having interval coefficients [3].
[4.Ch.3]. {5]. [6]. The lauer approach is more peneral in
comparison to the former one since it permits the
<nnultaneous  determination  of  all  output  variables
tolerances onc 15 interested in. An additional advantage is
the possibility to find approumate solutiens tn 2 much
casier wiav than determimanon of the eyvact worst-case
tolerances,

While the linear circuit worst-case tolerance analysis
problem has been largely covered in the literature {e.g. {1]-
[6]}. its counterpart for non-linear circuits has drawn little
attention: the only paper which touches upon the nonlinear
tolerance problem seems to be (6], Sect. IV, B. An iterative
interval method is suggested there for worst-case tolerance
analysis of dc¢ non-linear circuits. At each ieration, an
associate  linear dc  tolerance problem s solved
approximately. using an appropriate interval method. The
approximate solution thus obtained must confain the
tolerance solution sought for all iterations. Therefore, the
iterations are initialized by selecting an initial interval
vector X which must contain the olerance solution vector
sought. The selection of a good initial vector X™ remains an
open problem. Indeed, if X is chosen two large the
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ileration process will take too long to converge: conversely,
if X™ is too small it might not cuntain the tolerance solution.
[n this paper, a new iterative interval method applicable to
both dc and ac worst-case olerance analysis of non-linear
circuits will be presented. Besides being more general, il
differs from the method of [6] in the way the linearized
system arising at each iteration is set wp and solved
(approximately). Another distinction is the fact that unlike
{6] now the imitial linear tolerance problem (starting the
iterations) corresponds to a circuit whose non-linear resistor
characteristics are linearized around the corresponding
nominal dc operating point of the original non-linear circuit
studied.

2 Problem statement

To simplify presentation, only the dc tolerance problem is
presented here for the special case where the circuit contains
only independent current-controlied non-finear resistors,
Furthermore, it is assumed that each function v, =f,(i,)

describing the v-i characteristic of the p-th .on-lincar
clement is known exactly {a more general setting, when
vp =fplipg)+b.be B where B is a given interval, can be

easily encompassed by the new method). Following [4]-
p.118. the following system can be set up

(plip)+Tpia =0, p=lo.m {la)
m
Eakjij=0.k=].,...n' {it)
=t

for a circuit having n’ + 1 nodes, m branches with m linear
resistors. m non-linear resistors, and m independent voltage
SOUTCES Uy,

Without loss of generality, it is assumed that only 1, (but not

up) have tolerances, i.c. fp € R‘J = [rﬁ'r;] Finally, system

{1) will be written in vector form as

Yix)=f(x)+Ax-b=0.xeR" (20

Ac A, (2b)

i — ————



L \\

fi(x)="1(x;). _ (2¢)
A={aij}.A' ={Aij1.a-u-e Aij {Zd)

where Ay are independent intervals. The tolerance problem
is 10 find 2n interval vector X* which contains (as tightly as
possible) the solution set S of (2)

$={u¥x) = 0a;€ A, (3)

The above formulation can be extended 10 more general do

non-linear circuits as well as to considering various ac
tolerance prablems in non-linear circuns.

3 The new method
3.1 Algorithm of the method.

Once again, for brevity, only the dec tolerance problem will
be covered here.

Let a,° and A° denote the nominal values of the respective
quantities. Using some inerval methods for do non-linear
analysis [4], [7], the corresponding nominal solution x° can
k: found. Now each [,(x,) is lin¢arized around %" as

_ af,{xf)

) =6 (x4 (x; -x7), ¢ = ————
a]l'.i

and he diagonal matrix C with non-zero entries ¢, and

(4)

vector d with ¢lements d; = f (xF)—¢;x7.i=12,..,n are

furmed. At this stage, the following linear de tolerance
analysis problem is solved

Cx+Ax=b-d, AgA' (5)

Let X'Y' denote an appronimate interval solution ot (5)
huving the property 10 contain the exact interval solution X'
of (5). At this point, each of f(x;} is represented within the
interval X," by the following linear interval inclusion [7]:

fx)=a®x; + B! x e x® (6)
where «'® is a real number (the slope of f, within X,'")
«hile BY, 15 2 comesponding interval. On introducing the
dizgonal matrix C*% whose entnies are @, and the intervat
vector B, the following linear dc tolerance analysis
problem is next set up and solved:

C%%+Aax=b-b", Acal. b’ eB® (7

Let the approximate solution of (7) be X" At this stage, we
form the union
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XTEXUOX )

and an iterative procedure {Procedure 1} starts from (6} and
(7) using (7). Let X" be the solution of the
corresponding problem (7) at the v-th iteration. The iteratve
process is stopped when X" ¢ X*"'. Now a second
procedure (Procedure 2) 1s started which aims at reducing
the widih of the last intesval vector X' obtained at the end
of Procedure 1. Let X=X The present procedure has
the same structure as Procedure | The only difference is
that now the union operation in (7'} s replaced with the
intersecuon operaton

x\:-:‘\‘-lbl,.\xnh {?‘)

The process stops when X' ¢ X" The soluton of the
original non-linear de tolerance problem s then given by the
result of Procedure 2

The method s easthy penerahzed o the ac case The vnly
difference s bt now (30 and (7) are 10 complex farm.

3.2 Solving linear wlerance problems

Sice the itcratise method ivolves the repetinve
solution af system (73 15 over ull efficiency  depends
strongly on how etficiently {7) is selved at cach weration, In
(6], the corresponding Jinear tolerance problem is solved
appreximately using an improved version of Hansen's
method [8). The same method could be also used for solving
{7). A simpler method 1. however, sugpested here

System (71 will be rewnitten in the form

(A st ~ur=h" -35.ae 8 e ! )

where the supersenpt ¢ means centre and A, 3 and o are the
corresponding centred varnables On oaccount of (lay b s
seen that A 1s o diagonal matr The tollowainy notations dre
now introduced: X - duagonal marnx whose diagonal s 1,

A - wveclor  whose  elememts  are &, of 4,

ﬁa =(§n,|.---.§m} . radius of A te
fi“ =0-5{3i - :.‘1, ). Ry - radius of b, R - the radius of the

unknown {approximate) sofunon U, C= A", C=CXL R, -
diagonal mnatna whose diagonal is lormed by the elements

of the vector B, 1l van be proved that R s the solution ol

the tollowing rcal fincat system
(E-|CJR, R =[CR, +Ry) 9)

where E is the unit mainx. Finally, the approximate solution
X of (8) is the interval vector in centred form

X=x"+[-RR] (10)




It ¢can be shown that X contuns the exagt interval
salution X (81

4 A numerical example

To sliustrate the applicability of the new method, an
clectrical circuil contain transistor and diode {Example 6.2
in Reference 4) is considered. Vector-function f{x)=(f,{x;}
faixs) f;(x;))T. malrix A and vector b from (2a} are given by

fiix =107 -
f(x7) =198.1077 (™% 1y

RLEW

fyxa) =107 (e ™ o

0.6089 —-1.6722 06689

A =[0.6622 1.3455 0.6622
1 -1 4
[ 8.0067
b=|-4.0535
L &

The wlerances in the disgonal clements ol matniy A are
chosen wy be 209 Using the algorithm desenbed insection
A1 and the simple method for soiving the hoear nterval

tolerance problem from 3.2, the following interval vector X

05103  0.5778
X" =1-4.3520 ~2.6756
0.3483  0.4898

~abtained The number of iterations far Procedures | and 2
are respectinely 85 and 81 while the wrtal number of
deraliens 15 166, The interval vector X contains {as tghtly
as possibles the solution set § of (24,

32 Conclusion

We present a new iterative interval method applicable to
hoth de and ac worst-case tolerance analyvsis of non-linear
circunts. The method s based on description (21 where only
part of the diagonal elements of the matrix are ntervats, A
main feature of the method s the new  lincanzation
wehinique (61 wsed at each seranon ol the camputation
prowess The fuct that onls part of the diagonad eloments of
sattie A are interval allows o develop a simple method for
appraoximate solution ot the ansing hinear interval system
171 The numencal efficiency of the method proposed can be
improved if sparse matrix techniques are used in solving
system (9). This improvement will be substantial for large-
scale circuits when the size of the comresponding system (9)
15 rather migh.
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Abstract

Inierval methods are werative methods capable of solving
the general nonlinear programming problem globally,
providing infallible bounds both on the optimum (optima)
and the corresponding solutton coordinates. However,
their computational complexity grows rapidly with the
dimensson of the problem and the size of the search
domain. In this paper. a new interval method is suggested
which seems 1o have improved numerical efficiency. It is
bused on the use of a new interval linearization of the non-
fincar functions invelved. Twa algorithms for computing
ih are presented. The new  optimization  methed
invorpurales seven provedures that are implemented by
way of the new ntersal hinearization. A numerical
soample dlustranng the method suggested 15 alsa poen

1. Introduction

Apelvng onterval analysis techmigues o solang sarous
global  uptimuzainon problems  has been a muyor
defermimshic ap proach over the lastdecades [17 - [§]

In this paper. 3 new interval method s suggested for
wiebdl  soluton of the fullowing constiraint optimization

probiem.
SMimimaze
Pt (la)
subject 10 the constrainis
@ lx)s0, =012 .r { b}
xex%cr" (lc)

where ¥ 15 a n-dimensional vector and X' 15 a given
imitial search region {2 box). The functions in {la) and
i 1hy are assumed to be only continuous in X'%
It should be stressed that problem (F) presents in an
cquivalent form the general nonlincar programming
problem which also involves equality constraints
eia=0. 1=r+l ..y (1d)

Indeed. each equality construint can be  represented
equivalentds by two tnequalily constraents.
Let fix), s€ XCR", p2n be a cononuously
differentiable  funcuion. Known interval methods  for
salving {1} are ierative and are based on the fullowing
mterval hinearization of f in X

LOXV= [l =5 (XHX, -1 s ()

where " 15 the centre of X and G,{ X} is either the inter-
val exiension of the derivative g,{x)=df/dv, or the
corresponding interval slope [3], [5]. [9]- In contrast, the
present method appeals 1o a new interval linearization of f
in the form: ’
LUXy=Fax+B. x€X, (3)
=]
where a; are real numbers and only 8 is an interval. The
use of (1) in the computational scheme of the new global
oplimization method leads o improved performance as
compared to the other known methods since it permits a
better (tighter} enclosure of the original nonlinear
functions. Another advantage of the alternative form (3)
resides 1o the fact Lhat it i1s applicable 1o nonlinear
functions that are only continunuos or even discontinuous.

2. New interval linearization of a
nonlinecar function

Two  algonthms  for determining  the  mew  nterval
lincarizanon 13) will be presented in thes section

2.1. I'irst algorithm

Lel £on) bea multivanale funciion f: Dc R = R,
The transformation of a nonhinear Machon fio, ve X
to the new linear mnterval form (33 can be done following
the approach suggested in [6]-[8]. If f{x)} is in separable
form . &, and B can be determined by a procedure given
in [6]. For an arbitrary function f(x) (which is
continuous or even discontinuous) (3} can be evaluated by
following the approach suggested in {7). |8]. Firs, f is
transformed into a system of equations of the so-calied
semiseparable form [7) by introducing a certain number m
of auxiliary variables. Afterwards, each new semi-
separable equation is easily transformed into form (3).
Thus, a svstem of m+l linear inlerval equations is
generated. Finally, the auxiliary variables are eliminated
from the latter Linear system 10 yield the tinear form (3)
corresponding 10 the oniginal function f.

Thus. the approach outlined above invelves the following
S[Cp\.

Step |. Transformanon 1o semiseparable form.

A function f1s called 10 be in semiseparable form if [7)
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f(x)‘):f(xHZ Ea“k! . @

i=1 k=1l=1
k=i
isome of these terms may be missing). The transformation
of an arbitrrary function to a set of functions of the
semiseparable form (4) can be done by the approach
sugpested in [7]. This possibility will be illustrated by the
fatlowing example
Example 1. Let
fla)=(x v xi
with ¥ € X and
X, =[0,1]. i=12,3 (5b)
The problem is to convert (5a) into a set of semiseparable
tunctions. With this in mind. we introduce two auxiliary
variables x, and x4 to get
Flxh=a,x

-1} {6}

(3a)

- 1)1} - xq)

e 1,: - l::
1y = l.\,: -y
“oowoall expressions in (b) are wn semiseparable form We
need also 1o evaluate the comresponding ranges
X, =|-1.1
=[-11]

Siep 2. Enclosing the auxiiary variable expressions.
P

{Ta)
(7b)

The above example shows that in the general case f(x)

w11l be transformed by the introduction of a given number
»rof auahary variables into a set of m+ | functions of
~ciniseparable form
fiov)y =00 (8
O DR 2...m. veR™MT
Cemented” vector of variables. For Example 1 sysiem
s gsen by (6 with
Taena ). J, =, =12
AL thas point, each funcuion f,, {=0,1,...,m i5 enclosed
+ u carresponding linear enclosure {3). Thus, for the
vaample considered

fo=., . =1 15 the

LR

RSN | m=2

fo= FEauvy raghg =By, v, € X, 1€ X, (9]
Cs g Ea rayt o, yEX A E N, D
r e a8y, e X ah
In the general case

A= hh
fo€ Tag,n, + By (123

Ll
L.€Lax, +B, i=12..m {13)

Iy

A
=Xa,X +8 (137

Fadl

arep 3. Eliminating the auxiliary variables

. the final step, the auxiliary variables are ehiminaied
cmg 12y and (13). This possibility wilt be illustrated by
~av of Example 1. Substiwating (10) and {11) inta (9), we

W E U N, F By m U )y * gy T
+8Byra B a8,
iuaablv, f 1) given by (5a) has been enclosed in the box
V' wuth sides (5b) by the linear interval expression

(14
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L(.v:)=ai,rl~|-x:r'2.=r2 +a'3.r3+B (15a)

with
a =aa, . "-: =40y ~dg ., a:‘=ala, (15b)
8 = By +a,B, + a8, (15c)

2.2. Second algorithm

Now, the only assumption on s thal [ 1s 2 factorable
funcuon |17}, vomposed of the four ardhmetc
operanions {+, -. *. /) and the unary aperations (sin, exp,
log. sqrt. abs. e1c.). However, to simplify the presentation,
the linear interval enciosure (1) will be first determined
for the class of polynomial functions. Later on. the
approach adopied for polynomial funclions will be
extended to arbatrary factoriable functions.

A. Polynumial Functions

In thes suteecnon, an algonthm will be suggested for
determuiy tne rerval enclosure 133 tor the
special Luse where §onoa pulsnomial funcion Thas
algorithin s based on the nouon il g wenerahized interval
[3]. We shalb introduce o shighily dalterent generalized
representation tn the following manner.

lnea

Let X =(X,....X,) and
X, =¢,+V | i=1l..n (16a)
where ¢, s the centre of X, and V; 15 2 symmeirical
interval
Ve |-k LR | (e
R being the radis of 0 e
K=y = )

Defurinon 1 A penerahzed intersal X s defined as the

affine lunction

(Db

il

(-R, K]

L}

X = 20‘.'\" o, vV LV

and

where 1 are reat numbers while V, and V| are
centred "ordinany T ntervals.
Using X _any “ordimary " interval can be represented by

anapprosiate Chotee of the terms ol X Indeed, letiing
i, = - L and b - b ae 2et

N Vo Vowhere A s dhe pih ordinary atersal

Now owe saihdetine tie operations cfadditon and
multiphoation ol genetatized mtervals G amervalsy Lot

Y= iBl"’l o, Vo,

1%l
be a G imerval Then we have the following rules.
Addition. Let X and ¥ be two G intervals pvcn by (17
and {18) Thesumot § and ¥ denotedas X +7 is
another Gantersal 7

V,=[-R,. K] 3.3

2% Vo= |-R.OR | 19a)

and
o 00 =l (19by
e ve,. Ro=R K (19¢)



Multiplication. The product X.¥ of vo G intervals X
and ¥ is another G interval Z if:

y =¢c B +e.0,. i=hin (20a)
1 L]
£, =c,c, + 2 zaa'ﬁi R‘I-J (20b)

R = RIR." +]c‘_‘1R_‘. +|c.v1Rx + i |a,ﬁ‘ |RI'RJ +
WL (ZOC)

<R, 5|8,
=1

( R, is the radius of X ).

The proof of (191 and (20} is based on ¢lementary
properues of adding. multiplying and centring ordinary
intervals and is therefore omitied.

Using the above two operations. any intermediate or final
result in evaluating the interval exiension of a polynomial
function can be represenied as a generalized interval.
Indeed. multuplving an ordinary or G nterval by a
conslanl ¢ is a special case of the muluplication
Z7=X VY UM X=c=-1we get 7 = -¥ and the rules for
the operation of subtraction tollow immedinely,
Subsraction. For 2 = X =¥

y =a -f. i=l..n c.=c, -¢c, (212)

R.=R +R, (21b)

Evample 2 Letx=(xux) and

fio=iy-2x). x,€X,. =12 {220

Find the linear interval enclosure {3} corresponding to
(12).

R, +R, i}al |Rl +% ifa,ﬁ,lRf
r=] -tk

We first introduce the G intervals
Xo=aV +0Viee Xo =0V, +8:V, +cy
with @, = 1. B, = 2. Then we compute

¥=X-X. {23
usine (211 The final resultis obtamed as the product
FrXr=2=YXN =yV +7rd,~c -V, (24

computed by (20}

The hinear form (24) represents equivalently {for the
example considered) the hnear form (3} [ndeed. from
1167

V=X -¢. i=12 (25)
and substuting (250 mte (24) we pet
FitXy=a X ~a.X.-H (20

with
=¥, a.=Y.. B=c. -y, -y V (20b)

B. Facinrable functions

The approach suggested n Section 22 A will be now
exiended to arbitrary factarable funchions (9] A function
f:DC R" = R is a factorabie function (f.f.) i and only
if it can be represented by an expression f{x) which is
the lasi element in a finite sequence {f;(x)) of

expressions. For the case of fecC (D), the list of
admissible expressions is given in [9]. An approach lo
treating non-differentiable functiens 15 considered in {3}
Ch. 14. Ap ahernanve idea is suggested in |5], Ch. 6.
Here, we shall conuder the peneral situation when

feC'(D). f eC"(D) or even when some expressions
/. (x) may be discontinuous functions.

Let W denote the set of all building expressions for a
given {.f. For our purposes, it is convenicnt to divide W
into two parts W, and W, such that

W=WUWw,
The set W, is made up of expressions which are used 1o
construct a multivariate polynomial function. The set W,
contains the following three groups of expressions:

{1} the reciprocal value operation

fta=l/x, xeXeR, OeX (27)

(ii) the set © containing standard funcuons P, 1o be
found in high level programming languages, i.c.

@ = {sgrt(-).exp(.).In( ). sin(-).absi ). ) (28)
The set D can be entarged as appropriate. For instance, it
may include various discontinuous functions. A typical
example of such functions is the unit step function  1(x)

defined as:
() = { l. for x>0 29)
0. for x<0 -
tiii) unary funcuions f,: R — R which may include

rational and trrational parts.

The main characteristic of all unary funchons f, & W,
1< the fact that they allow casy computation of a
correspending linear interval enclosure (3).

Now we are in a position 1o present an algonthm for
comp.ting {3) for the case of an arbitrary f.f. We assume
that :he sequence f, (x) representing the function at hand

f has already been chosen. To simplify the presentation,
we assume additionally that the first & expressions f, € W,
while the remaining [, € W, (in the peneral case. the
appearmce of f, €W, and f eW, in the sequence
t £, (1) may have 2 mare complex paitesn).

On account of the results obtained in subsection 2.2 A
tt is clear that the linear interval enclosere £ {X)

corresponding o the last expression f, { 1) belonging o
W, s piven by the G interval

F, = ial, X, +8 (301
2=l
whuch has been compuled recursively using Ganlervals fr
corresponding 1o cxpressions [, with j<k.

Now consider the first function f €W, | i1c the
function f,., Accordiry to the comstruction of the
sequenve 0, (o))

fialey= fo Uf e (3la)

filoe FiX) (31b)

Since fy,, is a unary function, it can be enclosed by the
interval function

Fia =au1F1 +8,0 (32)

where a,,, and B8,,, are determined in one way or

another {depending on whether f., is a2 €".C° or

discontinuous function). Substituting (30) into (32}, it 18
seen that £, ., can be represented as a G interval
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|

ﬁ1-|=zahl_,x1+3n| - {332)
1=l
with
iy =Gy« Biyy=a,, 8 +B (33b)
Since (31) remains valid if the index k+1 is replaced with
¢ > k+], it is clear that the recursive formula {33} also
holds for i » k+1. Thus, it has been shown that the
factoniabie function can be enclosed in X by a G interval

F‘:iafxﬁa (34)
. el
whose coefficients &, and additive term 8 can be
determined in a recursive way using only the binary
eperations (19), (20}, (21} (addition, multiplication and
subtracting of two G intervals) and (33} {muliiplication of
a G imerval by a scalar).
Example 3[9] Find the interval enclosure for
flo=x}texp(x), X, =[l, 15}, X, =12,2.5)(3%
The function fix) can be defined by the comesponding
clernent fyi ) from the following sequence

JASSER {36a)
fale)=1lexpix,) (36b)
f]li}"-fi(-ﬂf:[vﬁ) (36¢c)

Applying the above algorithm we first have to compute
the enclosure for {36a):

FiX)=aX, +8, {372)
Using Procedure 1 from [7] we have

b, =-all4, b=-xxi (37b)

fn a stmilar way, we find the enclosure for (36b):

FiX)=a,X,+8, (38}
where
f=-liay, b, =1/B-a,lnB. b:= f:[I:}-uJ;:
tIn (37) and (38), 4| and ap are the respecuve slopes.)
The expressions (37a) and (38) are then represented in the
form of two generalized intervals F, and £,. Finally, the

enclosure F{X) of (35) is given by the product F, 5, ie.

F(Xy=FE, =y \V,+Y,V,+8B (39)
Using {39). we have obtained
F{X)y=0.0367, 0.3045] {40)

The same example was solved 16 19] using first- and
second-order anterval  derivatives  and  slopes.  The
tollowing results have been obtained Lhere:

Fo =1-0.013, 0.35) F¢ =[0.018, 0.32] (1w

Fpr =1 0014, 0.32] F5, =10.021 0.31] (41b)
Comparison of (40) and (41) shows that fur the example
cunsidered the present algorithm provides a narrower
enciosure 1han the approach used tn 9]

3. The new method

It13 based on the following set of provedures 1o be carried
out gt each iteranon. The interval extensions required in
cvery procedure are implemented using the new linear
furm (3}

Frocedure |. Let ao be a current upper bound of
@alx), TEX where X © X If
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D X) > gy (42)
then X is discarded {1}, {3).
Procedure 2. Monotonocity test [ 1), [3] I X s strictly
admissible 1s.a.4 ]3] and for some ¢
G{X)>00or G (X)1<0 (43)
where G, ( X} 1s the interval extension of &g / oy, then X
is discarded.
Procedure 3. Nonconvexity test. If X is s.a. and
H,(X)<0Q (44)
for any { = 1,...1, then X 1s discarded [3]. Here H, (X)

is the interval exlension of 8:%!&,:.
Procedure 4. Inadmissibility test. If
®(X)>0 (45)
forany { = l,...r. X is discarded [3}.
Procedure 5. If
DO, (X)<0 (46)
then the comresponding constraint 15 inactive and c¢an be
ignured tor the current iteration.
Procedure 6. This procedure is an attempt 10 reduce the
currgnt box N € R" using separately each of the
inequalitiey
Ly = Sy + B, €@, <0 (47a)
el
LiY)= '_‘:(I';'.\"«-Br 55050. =18 (470}
where 4 (F) s the himear umerval Torm (3} corresponding
to funcuon ¢ (4, = 0.0r.
Procedure 7. This procedure 15 based on the linearization
of the so-culled Friz-John system

vzt e Y g o0,y =00

Jru=w g any=00 40 Lor (48

fim) = i“. ~-1=0
ral}

where ¢ &, are scalars. This is a nonlinear system of m
equations in m unknowns and. in general, m=n+r+ 1.
However, al some iterations »r ¢an be reduced by '
Procedure 2 orfand Procedure 5. Each function f, (1) in

(48 1 then lineanized in X < R™ and the following
SY3lem o setup

Av= 8 149)
whure A as constant treal) e v o matniy while 8 is an
interval vector Ssstem () s then solbved anan efficient
manner by the use of the so-called equattonwise constrainl
propugation |81

4. Numerical example

Wo consider the Tollowing optunization problem ([3],
pime
STiimize

Wyl = =6y w120 6r,. »oxy (50a)




subject to
@;(x)=1-165] -25x; €0
@,0x) = 13x) - 1454, +851, - 4000 (500)
py(x) =xx, -4<0
There are two global solutions:
x] = $006604. x, = :0.1929 {54
and the global minimum is
@y =0.1990 (52)

The p;ob-lcm has been solved with accuracy € = 104 for
various starting  boxes X™  The results are quile
encouraging. Thus. for X o2 x1® ={-1.4] the method
required N;=107 seranons o find the global solunons
(51). (52) and took 1=0.33 sec when run ona 160 MHz
Pentium computer. As the volume of the staring box X o
was enlarged 1000000 nmes. the run tme wis increased
only 3562 umes.

5. Conclusion

in this paper, the general nonlincar programming problem
(or 11s variants) is addressed. A new mterval method for
the global soluton of the optimzation problem
considered has been suggested. [U s based on an
siternative interval lineanizaton of the nonlincar functions
imvolved which is updated at each iterabon of the
computation process. The interval fineanzanon suggesied
i< more general than  other known lineanization forms
since il is capable of enclesing functions thal ar¢ only
cannnuous or even discontinuous. The present interval
Lineanization 1s in the form of an affine interval function
where only the additive term is an interval whith accounts
for 1s better enclosing properties.

In us present form. the global optimization method
sugpested is based on the use of seven procedures that are
implemented through the new inlerval hincanzanan. More
wophisucated computational schemes. inludiny addinonst
procedures. are howesee pensihle 11 the optimizason
problem considered pvolies a sysiem ol nonlinear
inequality constraints, one such procedure can solve {in
the sense of [3]) this inequality sysiem at each ieration of
the iterabive process.
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An Interval Method for Global Nonlinear Analysis

Lubomir Kolev

Abstract—In this paper, the problem of finding the set of all real
solutions to a systemn of n nonlinear equations contained in a given
n-dimensional box [the global nonlinear analysis (GNA) problem]
is considered. A new iterative interval method for solving the GNA
preblem is suggested. 1t is based on the following techniques: 1)
transformation of the original system into an augmented system of
n’ = n+ rmn equations of n’ variables by introducing m auxiliary
variables, the augmented system being of the so-called semisepa-
rable form; 2) enclosure of the nonlinear augmented system at each
iteration by a specific linear interval system of size n’ x n’; 3) elim-
ination of the auxiliary variables; and 4) solution of the resulting
reduced size n X n linear system, using the so-called constraint
propagation approach. The method suggested shows a significant

improvement over previous lechniques for the numerical examples
solved.

index Terms—CGlobal noalinear analysis, glebal solution of non-
linear systems, interval analysis, interval methods.

I. INTRODUCTION

'E problem of finding the set of all real isolated solutions
t1a system of » nonlinear equations of n variables is one
of the fundamental problems in science and technology. In the
field of cir_uit and system analysis and design, typical applica-
tions are global analysis of resistive nonlinear circuits, synthesis
of linear passive and active circuits, fault diagnosis of linear cir-
cuits, and determination of equilibria in neural networks. Other
applications a e load flow determination in power systems and
computer graihics. Solving systems of equations is also an in-
tegral part of many algorithms for global optimization.
Over the last few decades, numerous methods have been pro-
posed for tackling the global nonlincar analysis (GNA) problem.
They can be categorized into the following two major groups:

1) continuation (homotopy) methods [1]1-[4);
i) interval methods [5]-{13].

The methods of the first group solve the global analysis problem
solely in the special case where the nonlinear functions in the
sysiem considered are multipolynomials [4]. In the general case
of arbitrary functions they only are globally convergent to one
or more solutions without guaranteeing localization of all solu-
tions.

Presently. interval methods (methods based on interval anal-
ysis techniques {5]~[7]) seem 1o be the only methods which
are capable of infallibly solving the GNA problem for arbitrary
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was supported in part by the Bulganan Rescarch Foundation under Contract
TN-534/97. This paper was recommended by Associae Editor ). Viach.

The author is with the Faculry of Automatica, Technical University of Sofia,
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functions. The problem can be formulated as follows (cf. [13]
and the references therein cited).

The GNA problem. Let X0 = (X{”’, ceen X5 be an in-
terval vector (a box) whose components are the intervals X'.“’] =
1z.”.7\”)]. Given the function f : D € R" — A" and
X© ¢ D, find the set S(f. X @) = {2V, 7} of all
real isolated solutions (zeros) to the system of equations

flz)y=0 : (1a)
which are contained in X9, i.e., when
ze X, (1b)

The initial box X{® is chosen large enough to enclose all
solutions to (la) in R™. There are recommendations as to
how to choose X{® in the case of nonlinear resistive circuits
[14]), [15].

At their present stage of development, all interval methods
known to date suffer from a serious drawback which severely
limits their applicability, namely, their numerical complexity
grows too rapidly with the dimension n of the system and the
size of the initial search region X ©, Thus, for a system of nine
equations (representing an accurate Ebers—Moll model of a tran-
sistor) and a relatively small initial region X(® with X =
[0, 10), a method suggested in [ 16] requires billions of functions
evaluations in interval form to locate the unique zero of the GNA
problem considered and to prove uniquencss computationally.

Several attempts to improve the numerical efficiency of the
interval methods have already been made. One is based on the
use of the so-called modified interval exiensions [17} of the
functions involved which have reduced overestimation. An
alternative approach is associated with using interval slopes
[18)-{21] rather than interval derivatives in evaluating the
interval extensions. However, experimental evidence showed
that the overall improvement of the interval methods efficiency
obtained along these lines is still not satisfying, especially for
more complex problems of larger n and initial search region
[12]. (22].

Recently, 2 more efficient interval method for global analysis
has been developed {13] for the class of nonlinear circuits and
sysiems described by systems of separable form

f:‘(T)=Zf.'J'(.T-j), i=1,...,n (2)
=l

In this paper, a new interval method for solving the GNA
problem considered is suggested. It is based on the following

1057-7122/00510.00 © 2000 IEEE
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approach. First, by adding a certain number m of auxiliary vari-
ables, the original general form system (1) is transformed into a
larger system of the special form

f‘('}) = Z fx;(—'rj) + Z an‘)xm‘r;.
=i

k=1 =1
kI

n=n+m (3a)
defined in a »’-dimensional box. i.e., when
e X (3b)

(some of the terms f,,{r,) orfand some of the products xp7;
may be missing). Expressions (3a) differ from (2) in that now
they include additionally the products ri.ry. If all the terms in-
volving products are missing, we get a function in separable
form. For this reason, the (la) will be referred to as a system
in semiseparable form. Next. the method [13] treating the sep-
arable form case (2) is generalized 10 cover the augmented size
semiseparable form system (%), Finally, two important modifi-
cations in the computational scheme of the generalized method
are introduced: 1) elimination of the auxiliary vanables and 2}
improved solution of the resulting reduced size 0 x n linear
system.

The paper is organized as follows. Sect'on Il presents the
transformation of the general form system (1) to the system
of semiseparable form (3). In Section II1. the previous method
[t2] is extended for the case of semiseparable f~im system (3).
The improvements in the computational scheme of the extended
method are presented in Section [V, The overall efficiency of the
resulting method is itlustrated by several examples. Concluding
remarks are given in Section V.

I1. TRANSFORMATION TO SEMISEPARABLE FORM

In this section. it will be shown how a system of general
torm (1) can be transformed into a system of semiscparable
form (3). More specifically, the system’s components f,
are assumed to be composed of four arithmetic operations
{+.—.=. /], unary operations (sin, exp. log, sqn. abs. etc.), and
the power operation { "},

The transformation of (I} into (3) includes two stages: 1)
transforming (1a) into {3a) and 2) transforming {1b) into (3b).

A. Transforming the System of Equations

The approach herein adopted is to transform the peneral
form system (la) into the semiseparable form (3a). The idea
of decomposing a nonlinear function into a set of simpler
functions has already been suggested in the literature (e.g..
{23] and {24]). The present approach is a simplification of
the algortthm from [24] which takes into consideration the
specificity of the semiseparable form.

Let f; and fp be subexpressions of f, depending on at least
one variable. Consider the following four cases:

f=r+fn 4H
f=f fn (5)

f=1/fr (6}
/=) )

If both f; and fz depend on only one and the same variable
then f is obviously semiseparable in all the four cases.

If f; depends on only one single variable and fr depends on
another single variable, then only (4) is semiseparable. The re-
maining three cases can, however, be easily transformed into
semiseparable form. Consider first the product (5). By intro-
ducing two auxiliary variables, (5; is ransformed into semisep-
arable form as follows:

f=tn-mn
f=ft-fr—={wm="fL (8)
1;2=fn‘

The third case can be easily reduced 1o the second by replacing
y2 = fr with yp = 1/fp. It should be stressed that this is
only possible if the original function fi # 0 for all values of its
argument. For the last case, the transformation to semiseparable
form is as follows:

e L= el
f=U) {y=fn-10g(fr.l ®)
where the product in (9) must be transformed using (8). It should
be mentioned that (9) is only valid if f; > ( for all values of its
argument.

If both fy and fg depend on more than one variable we first
introduce auxiliary variables and then apply the above approach.
For instance, case {5) is transformed using (8). Now, by rep-
resenting fr and fg in semiseparable form. f can be put into
semiseparable form.

In order to make f; and fp semiseparable. we perform the
above transformation to fy and fg. regarding them as f. This
process can be implemented as a computer program (see [24] for
the more complex case of transformation 1o separable form).

To illustrate the above approach we shall consider
an example.

Example I. Consider the system

l -y —ry+2r(ry+r3) =0
2rary—or; =10

ry(rf+ri-1)=0

r{ri-r2)=0 (10a)
where o+ = {ry..... ry) belongs to the initial box X with
components
=111 X =100)
X =0, X% =j0) (10b)

The problem is 1o transform (10) to a2n equivalent system of
semiseparable form (3).

It is seen that only the first two equations of system (10a)
are semiseparable. To transform the last two equations into
semiseparable form, we introduce two auxtliary variables

(11a)
(11b)

;r;zrf+;r§—]

]
Tg = TI] — 2.
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On account of (10a} and (11), we get

1l — 0y =g+ 200y + ) =10
2roryg—r; =10

BNV — i

(12a)

Svstem (12a4) is now in semiseparable form. However, while the
original system (10a) has four equations of four variables. the
equivalent system (12a) has six equations of six variables. For
this reason, (1221 will be referred 10 as the augmented system.

So far. we have transformed ( 134) to the semiseparable form
sysem (1 2ay. To complete the solution of Example |. we need
also to enlarge the ininal four-dimensional (4-D) box Y to a
carresponding six-dimensional (6-D) box X (%)

B Tramvornune the itial Bov

We first consider the transtormation of X1 jn Example 1.
With this i mind. we have 10 compute bounds X' and \; on
the auvbiaey vanables. Using (LOb) and {11), it iy eastly seen
tha

V=N RN = -1
V=AY - N = -1 (12b}

Based on this example, we now proceed to considering the
general vase. Let the augmented system of separable form be
denoted as

firy=u (13w

where v = Lry... . .00 is the augmented vector of variables
and 1" = 1~ . with 14 being the number of auxiliary variables
needed 10 transform (Lay imo (3ay. For the above example n =
Lome= 200" = Goand 7 = (..., xrg) It is necessary to
determine the initial box X' for I in order to complete (13a)
with the condition

Fe X, (13b)

To du this, we panition the augmented vector 7 into two parts

r {1day

(14b)

Il
[
]

gy = {-rﬂ+1 ----- J"”’]

corresponding to the original and the auxitiary variables, respec-
tively. Thus. the augmented vector can be put in the form

r=A{ror,). (15)
In the general case. the auxiliary variables and the original vari-
ables are related by the function f,: B" — '™, Le..

w b} (16}

Fo =

677

In Example 1, the function f, is given by (11). We can compute
bounds X, on r, for any box X C X by evaluating the
interval extension F, (X)) of f,(x) whenx € X, e,

X, = £(X). Xcx© (7
Thus, we can compute the interval vector
X" =F, (.\'f‘”) (18)

which determines the bounds on the auxiliary variables, Finaliy,

the initial box is given in partitioned form by the interval vector
X

X = (.\"”’..\'3“’). (19)

Thus, it has been shown that the original problem (1) in-
volving general form equations can be transformed into a corre-
sponding augmented system (13). The components f, in (13a)
are in the semiseparable form (3a) and the initial box X(® re-
lated to {13a) can be computed using (18) and (19).

Once the transformation of (113 is completed. the solu-
tion of the original GNA problem can be equated to that of
finding all real solutions 1o (13). Indeed. let +* = (r*,r2) be a
solution ta (13). Clearly, the vector r* in #* provides a solution
to the original problem (1). Thus. our next objective is 1o devise
an efficient methd for solving systems of semiseparable form.

II1. SOLVING SEMISEPARABLE FORM SYSTEMS

In thus section, an interval method for solving the semisep-
arable form system (3) will be presented. It is an extension of
a previous method [ 13] developed for the special case of sepa-
rable functions. More specifically. the idea to enclose the sep-
arable terms in (3a) by an appropriate linear interval function
{13] is generalized to encompass the terms representing prod-
ucts of two variables.

To simplify notation, the symbols r. X € X® X0 wjj
stand for the n'-dimensional vectors &, X, X' respectively,
throughout this section.

A. Enclosures for Semiseparabic Funcifons

To maintain completeness. first the linear interval approxima-
tion for the separable terms will be briefly presented.

11 Enclosure for f,(r;). Let X = (X,..... Xj.
..... X} € X', The linear interval enclosure (approxima-
tion) of £, {r;) in \; suggested earlier [13] is in the form

LiX,)=D8,+a,r,. I, €4, 20
where [3;; is an interval. while «,, is a real number. Both B,
and «,; (which, in fact, depend on X) are determined such that
the following inciusion property hoids:

filry e Bi; + a,,r,.

.TJEXJ'. (2')

[I1 15 on account of (21} that L,,{X) is called a linear interval
enclosure (approximation) of f;;(xr;).] A procedure for deter-
mining «,, and B3,,, which will be called Procedure 1, has been
suggested in {13].
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Remark 1: In the original paper [13], no restrictions on the
functions f;;(x;) are imposed except for the requirement that
they be continuous. The Procedure { therein suggested for deter-
mining the enclosure (20) is applicable for the case of continu-
ously differentiable (CD) functions and piecewise linear (PWL)
functions, It can, however, be easily shown (using simple geo-
metrical considerations as in [13]) that the linear interval enclo-
sure (20) can also be constructed, even in the case of discontin-
uous functions having bounded discontinuities.

2) Enclosure for xpri: To simplify notation, we shall con-
sider the product

Try. reX, yetY

(where X and Y are intervals) rather than the product z.x;. If
rp and gy are the centers of X and Y, respectively, then

sy = (ro+ u){yo + v) = Toyo + you + Tov + uv
= —royn + i + Toy + uv. (22)

When - € X and y € Y, the centered variables u € [— R, R,]
andr € [-R,. R,] where R, R, are the radii of X and Y. Let
=K, . R, it follows from (22} that

reX, yevY.

(23)

Iy € —royo + wor + Toy + [- R, R,

Thus, the product ry has been enclosed by a linear interval ex-
pression since

Ty €ar+ y+ By (24a)
where @ = yu. .1 = 1 are real numbers while
B,y = —zoyo + [~ R. A} (24b)

is an interval. _

Returning to the original term ni}).-ck:r; of the fth function
f.{r) in (3a). it is easily seen that the comesponding linear in-
terval enclosure denoted as LL',]{X;‘ X} has the form

L (Xe X0) = qin + can + BY (252)
with
= nL‘PI}D]. e = nL‘PILm {25b)
By =) By (250)
where %', rf‘” are the centers of X, and X, respectively,

while Bk',’ is an interval and is computed as in (24b) {with zg,
3o and A = R R, replaced by .rim, :cfm and R = R R;]. On
account of (24a)

nr,);rk:.r:; € iy + ogr + Bi}) (26a)
when
Ty € Xi =€ X, (26b)

The above procedure for determining the slopes ., ;7 and
the interval f3;, will be referred 10 as Procedure 2.

B. The Generalized Method

Using the semiseparable representation (3a) and the inclu-
sions (21)and (26), it is seen that the following inclusion is valid

filz) € in:jz,- +b6. i=1,....%, zeX (27
i=1
where
aj; =ty + g (27b)
M= B;+) 5 B =5 (27¢)
3 I &
Now a real n' x n’ matrix
A = {a;} (28)
is introduced and a n’-dimensional interval vector
b = (b{,...,b,‘;) (29
is formed. Thus, (27a) can be put in vector form
fiz)e Az + ', reX. (30)
If v is a solution of (3), then f(y) = 0 and by (30)
De Ay+ b, yeX. an

Now we can state the main result of the section.
Theorem 1: All the solutions y to

f(z) = 0.

with f;(z} given by (3a), which are contained in the n'- limen-
sional box X are also contained in the solution set S(X ) of the
system

reX (32)

Az +b=0, bebf (33)

where b is any real vector contained in b7.

The proof of the present theorem is similar to that of Theorem
1 in {13] and will therefore be omitted.

Remark 2: Tt should be stressed that A and b/ depend on the
box X, ie.. (33) should read

AX)+b=0, beb(X). (33"
To simplify notation, here and henceforth the shorter form A
and b’ is used.

Formally, Theorem | of this paper is an almost verbatim
replica of Theorem 1 of the earlier paper [13] where the
separable form equations case was considered, In reality, this
paper’s result is more general since it covers the case of equa-
tions in semiseparable form. The most important distinction is
the inclusion (27) and, more specifically, the expressions (27b)
and (27¢) for the slopes a;; and the intervals 4!, respectively.

Based on Theorem 1, the method of [13) is readily extended
to cover the semiseparable case. Technically, the only difference
is that now the square real matrix A in (28) and interval vector &7
in {29) are (n + m)-dimensional while their counterparts in [13]




Riniliee ¢
e Y
Artatfon
KR Enh
haies it

TP TITL L

i B
}nm.fm.'ll

W s

Inters ol
aent O

seterratd
hanorm
L aelerdn
ther O
YIHET

rihwer O
1 the In

Power

-l
TN| [N

R AN N

Suthy
n lnpul
VITITWE
e -13n
e C
-V

.l\\-\-“l
‘ompul

——

“ALLS
SUAN
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are n-dimensional. For this reason, only several facts. needed in
the sequel, will be briefly presented here. Let
B=-¥ (34)
The generalized method applicable 10 system (3) is an iterative
method. It is based, essentially, on the following procedure.

Procedure 3: At each iteration k. a current n’-dimensional
box X%} C X0 j5 penerated. Using Procedures 1 and 2. the
corresponding .A'*# and 3" are formed [according to Remark
2 A™ and B*) gtand for A(X™®) and B(X (01}, respectively].
Using A™" and B un interval vector ¥ is then computed
{by formulae given in [13]). The iterative procedure is defined
as follows;

X=boy Y X s, (35)
The algonthm of the generalized method which is based on Pro-
cedure 3 will be referred to as Algorithm 1.

Stmilarly to other interval methods the present method can be
used as a computationally verifiable test for existence of solu-
tions to (3arin .\,

Theorem2: Let f: DD C " — K" bea CD function in the
domain ) and X' "' ¢ D). Introduce the interval operator

K(rt)=ar (,\'“") B (J\'“'J), k>0 (36)

where A{X'* and B{.X™') defined as in Procedures | and
1. correspond 1o the current box X'*), Then, if a1 some kth
teration

Iy (.\'“‘J) X (37)

the abose inclusion implies the existence of a sofution 1o (34} in
‘\'{1—1'

The proof of the theorem is given in the Appendix.

The numerical performance of Algorithm 1 has been tested
on several systems of equations of the form (3a). It will be illus-
trated by the following two examples.

Example 2: The problem is to find all real solutions to the
svstem (10a) contained in the box X% ¢ R4 defined by (10b),

According to the approach adopted in Section I of this paper,
we have 1o find all real solutions to the augmented system (12a)
which are contained in the enlarged initial box .\ (" determined
by (10b) and {12b}. The latter problem will be solved using Al-
eorithm 1. To do this, we need to generate at each iteration & the
corresponding subbox X', At this stage, we apply Procedures
I and 2 for the current box X'’ (o obtain the following linear
interval system:

M1y + ayary 4+ agry = B
Ugady + d23%3 —xy = By
oy + fgsds, = BJ

iyrs + gerg = By

W10y Fusery — g = Iy

(3R)

dgLry —Fo — 1y = By

LTy

where, for notational simplicity, the dependence of the real num-
bers a;; and the interval vectors B, on X** is not shown ex-
plicitly. Now } ¥} is obtained as the interval solution 10 (38).
According 10 Procedure 3 Y ¥ is 1o be determined at each kth
iteration. Thus. Algorithm | reduces. essentially. to repeatedly
setting up and solving the linear interval system (38) (for each
subbox X *)) until the desired accuracy of solution = [13] is
met,

The augmented systermn (12), (10b) has been solved with « —
10~ and the following two solutions were found

) = (= 1.000000.0.000 000. 0.333 333, 0.000.000,
0.000 000. 0.999 999}
7' = (—(.786 151.0.618 034. 0.173 857. 0.214 809,

0.000 000, .00 000) (39)

where each component recorded to six decimal places is the
midpoint of a corresponding side of the solution box enclosing a
solution. (In actuat computation the left end-point of all compo-
nents X {*' of the starting box Y10 was lowered with & = 10~
to ensure the location of the first component of {1 )

Algorithm 1 requires N, = 230 iterations to locate the solu-
tions (39). The solutions of the original nonlinear system (10)
are given by the commesponding first four components of r{!! and
at?,

In the example considered, the original system (10a) is related
to solving a global minimization problem [20] for which

I <0 g <0 (40)
On account of (40} the intervals (12b} are reduced to
XV =t-ro0L A2 = -1 (41

The augmented system (12a) has also been solved for the
smaller box X%, determined by (10b) and (41). A unique
solution was thus found which is given by r2’. Now the
number of iterations V; needed to locate r'*’ within an accu-
racy £ = 107° is ¥, = 24. The latter example has also been
solved using Krawczyk's method [6], [7]. [1 11, [20]. Although
the more efficient componentwise version of the method was
programmed now 993 iterattons were needed to locate the so-
lution within the same accuracy. The corresponding execution
times for a Pentium 166-MHz computer are 0,018 and 0.684 s,
respectively. The example iltustrates 1wo empirically observed
facts: 1) the global analysis problem considered can be solved
more efficienily by the present method and 2) both methods
require approximately the same amount of calculation per
iteration.

The following example is related to electric circuit synthesis
{(11]. p. 276).

Example 3: The problem is to realize the following voltage
ransfer function:;

3 0.186s% + 2.474
T03275% + 277052 + 1,905 + 4.949

V() (42)

by means of a passive electric circuit ({11, Fig. 6.4)). It is desired
to determine the component values G, . C1.C2.C.GLand L.
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It can be checked that these values are solutions of the following
design equations system:

T1xg = 2474

1y = 0,186

(i) + 75)re = 4.949

{ro+ ra)oeg + e = 4945

rldy +r3) +aglre +x4) = 2770

Ioldy + oy + aaay = 0827 “4h

wherer; =Gy = Crary=Coag =0y = (. and
r¢ = /L. The initial box .X'"" is given by

N9 = oor20. X = [0.01.0.50]

X = potzel. X9 = {0.01.0.50]

N =25 XYY = [0 2.00). (44)

The desired solution accuracy ¢ was chosen to be 107%. Using
Algorithm 1. three solutions

U= 1010, 00T, 13K, 0.1220. 1.516. 1.632}
P TN TTROL LLO02, 0.1040, 1.784. L.38T)
SV S LG0T 190, 0.656. 0,097, 1908, 1.296)

{45)

of 143). contuned in (333, have been found within the desired
accuracy. The number of iterations N, required is 9169. It is
worthwhile noting that Krawezyk ‘s method requires 37 928 it-
erations to find all the three solutions (45) wit'un the same ac-
curacy.

IV. IMPROVEMENTS

As shown in Section I1I-B by Example 2, Agorithm ] of
the generalized method reduces, essentially, 10 setting up and
solving the foliowing »’ x n’ linear interval system

ARy = it {46)
at each iteration. In Example 2. A™** and B*? are given in (38).

In this section. two modifications will be introduced into the
computational scheme of Algorithm 1. The first is associated
with the elimination of all 1 auxiliary variables from the lincar
system (46). Thus, (46} is transformed 1o a system

ARl = ptei 4N

of reduced 1 x n size. The second modification consists of ap-
plying the constrainl propagation approach {e.g.. [28] 10 the re-
duced system (47). These modifications result in a considerable
improvement of the numerical efficiency of Algorithm 1.

A. Eliminating the Awxiliary Variables

The computational efforts needed to solve (46) can be sub-
stantially reduced (for large = and ) if the auxiliary variables
are eliminated from systemn (46}, This possibility will be shown
by way of Example 2. Indeed, from {38)

T =d A onars — 3"3;’,
(48}

2y = g1y — A Bl3<

Substituting (48) into the third and fourth equation of (38). we
get
) F ey apfy = Bl
apada + tiggry — 1y = By

'
gy 4+ w32 +agady = B3

yjdy Fappr Fdygr, = B; (49)
where
3y = 235 A3 = disign
ML = Ogaftel. 2 = —d4i
'
By = By + uys B, B: = B, + a8 (50

It is seen that the new system (49) has only four equations of
four variables while the augmented linear system (38) has six
equations of six variables,

In the general case, by elimination of the auxiliary variables
the linear interval system (46) of augmented dimension n+ 1 is
reduced to system (47) of dimension . Solving (47) is a much
easier problem than solving (46). especially for larger n and m.

It should be emphasized that the eltmination of the auxiliary
variables is carried out at each iteration, i.c., for each current
box X . Therefore, we have to compute. at each iteration. bounds
on the auxiliary variables. This can be done using (17), i.c.. by
evaluating some interval extension F, ,{.X) (or still better, the
range f..( X)) of f, ,(r) when .r € X where f,,(r) is the tth
component of the vector function f,(r). In general, the interval
extension X,; = F..(X) of f,.lo)in X can be computed
using some of the methods available in interval analysis [5]-[8).
1181-120]. However. Procedurc 1 allows an aliernative simpler
approach to evaluating X, .. Indeed. f, .{r) are semiseparable
functions. Therefore

S = funtr)+ Y ol a1
= POt
However
fodey €l + 17 {52)
Hence
fadryel®iry+ B? (59
where

1] L] 1]

try = Z y,ry, + Z nr:‘”rk;n (54a)

1=l k=
Br=% B
4

Thus. the interval extension X, ; can be computed in the form

(54b)

Xo, = LX)+ B° (55)

where L {.X) is the intesval extension (or, if possible, the range)
of i*(r)in X.
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TABLE |
RESLLTS #OR EXAMPLE 4
Algonthm Al A2
N 258 88
t {sec) 0514 0.141
Net 6 3

The algorithm of the present method which implements the
climination of the ausiliary variables will be referred 1o as Al-
gorithm 2.

Example 4. We consider a well-known network used 1o re-
alize a thaird-order maximally flat (Butterworth) function (e.g.,
[27. Fug. 710 1E we now specify 0= 0.0 Q and put 1 = (7).
g2 = Loy = ¢, she design equations are

dr= 2= ry=65=10

ot waary— b =1

dpday — A= (56)
113 known that suvstem 136) has two selulions
c e s e T = 2G0TI 1S (5T

The last equation of 1361 is not in semiseparable form. 1t can.
however, be casily ranstormed into such form by introducing
an auniliary vanable

LTy {58)
The correspending hnear interval syatem (463 s
A+ I..}.J"-_- -y = I
dapdy st iy = 1,
Hyrdp iyt = h‘;‘
Haads = iy oy = M 154}
The initial V7 was chosen 1o have equal components
o 1
AU (TR TR (O 1 (60)

The example consilered was salved using Algorithm 1 (by
selving the augmented svstem (59 and Algarithm 2 by climi-
nating .« 1 (891 and solving a system of three equations). Both
algorithme have located infallibly the two sotutions (57 with

= 107 Data illustrating the improved efficiency of Algo-
rithm 2 as compared to Algorithm | are given in Table |

In Table 1. .V, is the number of iterattons required to solve the
problem considered within the given accuracy. £ (in seconds) is
the corresponding execution time for a Pentium 166-MH2z com-
puter and | is the number of cluster boxes (boxes generated
additionally 10 the two solution boxes by the respective algo-
rithsm LA, [26].

For comparison. the same example has been solved by
Krawcsyvk s method also fits improved componentwise version
P21 |41 Itis worthwhile noting that the laner method required
N, = 1130 fterations o sodve the GNA probienm considered.

B. Use of Constraint Propagaiion

The secend modiftcation is related to the application of the
constraint propagation approach {28] to seiving the reduced
system (47). To simplify notation, it is written in the form

Ay =10 (61)

which actually stands for

Ay=b bhe L {62a)
Tuking into account he fact that ¥ must remain in the current

box X', (62a) is 10 be completed with the condition

ye . (62b)

The problem is to find an interval solution to (62}, that is, an
interval vector Y which contains the solution set of (62)

S(AB.X)={y:dy=bbeB.ye X}  (63)

The optimal interval solution Y* will be the smallest interva)
solution still containing S(.4. 3. X)),

It is readily seen that each component ¥° = [y*. 5| ¢ =
1.2..... n can be determined by solving two linear program-
ming problems

He = in

Cy-b=0. yeX. beB (64)
and
H = INAX
Cy—-bh=0 ygelX. hehl (65)

1o find the endpoints 4 and 77 . respectively. Thus, computing
}'* would require the solution of 2y lincar programming prob-
lems. Such an approach 1o tackling the GNA problem consid-
ered seems to be rather costly since Y77 is 10 be computed at
each iteration k. Therefore. a simpler approach witl be adopted
here which is based on computing a tight interval solution } ina
cheaper manner. This is made possible by reserting to the con-
straint propagation approach as a preliminary stage in solving
162). Several algorithms implementing the latter approach will
be presenled now.

Algorithm A3 This is an algorithm that 15 based on the fol-
lowing procedure involving two stages.

Stage A.For/ = L 1o ndo

o] .
b= B~ a,X,
IR

A, =Y ﬂ X,

It is seen that this stage implements the known interval
Guuss—Seide]l scheme [2]-[4]. Note that (66) 15, however, a
simpler version since unlike other interval methods now all the
coefficients u,, are real numbers rather than intervals.

Stage B. Now one iteration of Procedure 3 is applied 1o the
box X obtained on exit from Stage A.

{66a)

(66b)



IEEE TRANSACTIONS ON CTRCUTTS AND $VSTEMS—1: FUNDAMENTAL THECRY AND APPLICATIONS. VOL. 47, NO._ 5, MAY 2000

TABLE 1l
RESULTS FOR EXAMPLE 5
Algorithm A2 A3 Ad AS
Ny 3233 2780 1354 473
f (sec) 6.86 5.68 297 1.18

Algorithm A4 This is an extended version of the previous
algorithm, in which the first stage is modified as follows.
to ondo

Srgae A, Firoe=1

. l n
Y,=— B - ) auXs (67a)
o oy
k=1
X,:=Y,1X,. (67b)

{In actual compulation. (67a) is implemented in 2 more efficient
manner by first computing

T

Si=8 - Z anXi = [8,-51]- (68)
e
Then
S.= 8 +aa XNy —epdy (69a)
amd
S = N aa Ny —wa Xz (69b)

{The nextsums &,. > 2 are computed in a similar way.)

Stage B. The same as in algorithm Al

In the algorithms presented so far, all elements of the real
matrix .4 and the interval vector B are computed at the start of
the current iteration and remain unchanged during the iteration.
A belter. equationwise (row by row) computation of 4 and B is
implemented in the next algorithm.

Algorithm §: In this algorithm, stage A is modified in the
following manner. Initially for z = 1, we compute the first row
of -1 and the first element of B using the current box .\'. We then
apply (67 to (hopefully) reduce X to anew box X', Now .\ is
renamed \* and the second row of A and the second element of
I3 are determined. Now (67) is applied with 1 = 2. This process
continues until { = n.

Stage B. The same as in algorithm A4.

To illustrate the efficiency of the above algorithms, a numer-
ical example will be considered,

Exampic 5. The system 1o be solved is

Fy (b’,r? —25.2r3 + 24r, + Girg)
=325 0y + 75 (3903 — 143) + rprg = 0
ralGry + 12r3) — Srazy + 8%rs + rixg = 0
xy (1607 + 2505 - 1) =0
r5 (1303 = 1150 + 85rp — 400) =0
Joldpre —4) =10
Tu+ry+r3+ 26— 1=0. (70a)

The initial box X (©) has the following components:

X0 = x0=(-24, x®P=[0.1, i=3...6
(70b)
The GNA problem considered has 9 solutions

1} = (-1.7475,0.8738 1,0.0.0)

#? = (-1.075,0.5353 1,0.0.0)

' = (-0.2398, —0.056 48 0,5716,0, 4284 0,0)
'Y = (0.06604, —0.1929 0, 8341 0. 1659 0. 0)
% = (0.2398,0.056 48 0,5716.0, 4284 0,0)
z% = (0,0.1,0,0.0)

'™ = (-0.06604.0.1929 0.8341,0,1659 0,0)
r'® = (1.075,-0.5353 1,0,0,0)

® = (1.7475, -0.8738 1,0.0,0).

They have been located by algorithms A2-A5 with r = 107%.
No cluster effect has been observed. Data about num:er of iter-
ations and execution time (for a Pentium 166 MHz) 1cquired by
each algorithm are given in Table [1.

It is seen that algorithm A5 has relatively the best perfor-
mance. For the same accuracy Krawczyk's method required
N, = 33089 iterations to solve the GNA problem considered.

V., CONCLUSION

In this paper, the problem of finding (within preset accuracy)
the set of all real solutions 10 a system of nonlinear equations
{1) contained in a given box X (the GNA problem) has been
considered. The problem formulation is rather general; the non-
linear functions involved need only be bounded and may even
be discontinuous.

A new method for solving the GNA problem has been
suggested. It comprises the following stages. First, the original
system (1) of size n is transformed into a new system (3) of
size n + n by introducing m auxiliary variables. The equations
of the latier system are in the semiseparable form (3a) which
is a sum of the functions f;;{x,) of a single variable and of
products «\}rez;. Each term f,,(x,) or al)z,z; is then
enclosed tightly by the linear interval functions (20) or (25),
respectively, at each iteration of the computation process. Using
these enclosures, an augmented linear interval system (46) of
size 71 + m is obtained. Next, the auxiliary variables are elim-
inated from (46) and a reduced linear interval system (47) of
size n, having a real matrix A and an interval vector right-hand
side. is set up and solved at each iteration of the method. This
advantageously distinguishes the present method from the
other known interval methods where a much more complex
linear interval system having an n X n interval matrix and a real
right-hand side vector is to be solved at each iteration. Finally,
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(47) 1s solved in a most efficient manner using the constraint
propagation approach as implemented in Algorithm 5.

Experimental data show that as regards computer time and
memory volume requirements the present method outperforms
the other known interval meth82a ods for solving the GNA
problem considered,

There seems to exist a possibility for further improvement of
the numerical efficiency of the new method by incorporating
into its scheme ideas and techniques from affine arithmetic [29]
in order to automate the transformation of the original nonlinear
system (1) iato the linear interval system {47).

APPENDIX

Proof of Theorem 2 Let y be a solution to {32). Then (32)
can be transformed into the fixed point format
r=CLrblr) = P(r)
where "2 X% o proand b XYY o BY are (o be deter-
mined. We choose
Crm 0= (0,
hri=be D3 (‘\'”“’) )
Obviously. for any r € X%
Pirye K (_\'Ekl) .

Thus. it 37) holds. then /> maps X&) into itself. Therefore, by
the Shrauder fixed point theorem I has a fixed point in X' (¥
and, hence, * 32 has a solution in X%,
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ABSTRACT

An interval method is suggested for glabally solving optimization
probiems of the following type. minimize a given objectlive
function subject to both functienal mequality constraints and
simple bounds on the vanables. The present method appeals to a
new interval hinearnization of each nenlinear function and is based,
essenlially, on two computaton tlechnigues: linear programming
and consirnt propagation. The use of these techniques in the
computational scheme of the present method seems 10 lead 1o
impraved performance as compared: 10 other known interyval
methods of the same class.

1. INTRODUCTION

Interval methods (methods applying mterval analysis techmigues)
are capable of globally salving vanous optimizaton problems
with mathemaucal certainty {13 (5]

In this paper. 2 new ntersai method 1y supgested for global
solution of the  following  nequ ity -consirnng optinuzauon
problem

Mimimize

Pplx) {lay

subject b the constraints

@AxIE0, =100 r tiby
ol
ve Ao R (e
-0
where 15 g n-dimensional vector and X' s g given imal

search region (a boad The luncuon m {lu) 15 assumed
S

cuntinuously differentiable in '™ while these in ¢ 161 can be only

cenunuous.

Various methods have been sugpested for soly ing (1) globally [1)-
[5]. Let fiv) denote any funchion in (1), Known inters al methods
for salving {1y are all based on the lineanzation of f 0 A as
follows:

n
A= iy ;+Z GIYKA, - 1) {2)

i=t

where x; are the components of the center v of the box
A=A X with components A, and GUHA'} 1 the interval
extension of the denvative gtx)=dfiéh, or . better. the inlerval

extension of the comesponding slope {3] in A (ather more
sophisucated extensions of the 1vpe (2] have also been suppested

O-TRO3-S82-6 99 S 1O 00 « 20 IEEE

and used [I]-[5)). An elaborate algorithm fur sulving (1) by
applying {2) 15 presented in [3]. It is, however, too complicated for
practical purposes. Indeed. It involves as an integral pant a
procedure for solving a nonlinear sysiem derived on account of
the so-called Fritz-John conditiens {3). Since (Ic) 15 in facl the
shon notation of 2 inequalines:

X-0<0, i=1a (3a)

- €0, i=1..» (3b)

=4

where z and x, are the end-points of X, the Fri-John system
will be a system of m equations m m unknowns with
m=3n+r+|. To reduce the amount of compulation required. an
approach called “peeling of the boundan® which skips the
inequaliies (3) has been proposed in [5]. However. the simpler
problem (la). (1B} 15 10 be solved 3" umes wiich 15 still
prohibitively inefMicient for larger n.

Recently. a new approach 10 construcling mienal methods for
global optimization has been proposed in (6], 11 1s based on a new
1ype of linear interval hineartzation of fta) 1n A in the form:

L
Fix)= Z A, +B. 1€l 4
iz

where o, are real numbers and only # 15 an interval,

In this paper, a method for solving (1) 1% suggested. [0 appeals to
Imesnzation () and uses. essenualiy, the following two
techmiques: hnear programming and construni propagation. The
combined eflect of the use ol these lechniques tn the
computational scheme of the new method seems (o lead 1o
tmproved performance as compared 1o other known interval
methods of the same ciass.

2. LINEAR PROGRAMMING APPROACH

In this section, we formulate the fmear programming (LP}
problem 10 be mcorparated inte the computational scheme of the
new combined method.
Let A'g V'™ and

gix)=0, xe X {5)

where  gix)= g {x)..g,(x)} 15 the gradiem of Ppix). The
LP problem to be set up and solved at each iteration of the
ophmizatien method is refated to solving (5yand wiil be presented
in the furm ol the fallowing subroutine.
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Subroutine 1.

It is assurned thal using the approach of [7]-[10] the functions
gi(x) of (5} have been linearized by the form (4).

Step 1. Form the (corresponding te X7 real matnx A ={-a;,} and
the interval vector £ and set up the system

—-Ax+B=0. xe kX (L))

“Correct” 8 (1l postible) by compuling

B'=AX, B=8'NnBEB &
Srep 2. (Start of the choice of the objective function for the LP
preblem; Compute

Yo =dAx. . d=y . -b,

{ x,. and A are the centers of X' and 8, respectively) and find
dy = max{|d,l‘ i=1.n
and the commesponding index ) = 4 . So
dy =dysignid, ).
If o, <0 then goto next step, else go Lo siep 4.

Stepr 3 tConunuaiion o the chorce of the LP objgetve funct:on
and construction of the LP problem). Form the following P
problem

L
f=b = z’:.",rJ = max {8a)

1=l

e, =dg . i=lean (¥b)
—Zu”.l';'Ph‘:U. izk, i=Ll..n (8c)

b eh %)

(o to step 5.

Step 4 In thas case
m
f=h= ZC,J:, =nmn 19a)
1=

and (9b}. t9¢) and (¥d) are as in (8). However, as s well known,
problem (%) can be wrnitten eguivalently as a max problem (%)
Thus, the solution of (9) can be carmied oul 10 the same way as 1n
the previous slep.

Step S (Discarding A). Stan solvimg LP problem (8) for (93 using
the dual LP method. In this methed, £ for problem (%) 15 reached
from above, 1.e.

h2f. l=01. .. (10)

where f; is the value of the objective function al the #th LP
uteratien. Thus, of at some iteration (for 8, =[8,, Et ]

fr <8, i
then obviously the maximuem value

f<8; (2
This means that the mitial system (6} is incompatible. Also. f at
some ileration, the second method shows incompatibiliny of

problem (8), the iteranons are stopped and the cument X s
discarded.

Siep 6. (Reducing By ). If {dealing wath (8)) we reach the
maximum value f, then obviously

[ =b, < By (13)
and we can update (reduce) B, by putting
B, =|B,.b) (14a)

It 15 casily seen that in case of problem (9) B, 1s updated as

follows
B, =|h; . Bi] (14b)

Using consiraint propagation we can now reduce X as will  be
shown in the next section.

3. CONSTRAINT PROPAGATION

This techmiyue has already been applied in the context of solving
systems of nonlinear equations wsimg hineanzaton {2y {11] or
Linearization (4) [9).

For the purpose of global opumization we apply the constraint
propagauon (CP)iechmigue in the fellowing 1wo cases.

A) fnsofving svstem (5).

In this case, the CP approach s apphied when the LP algonthm
lerminates tn Step b We start wih updating vecior B as shown in
{14} We then continue with the following subroutine 1as 1n
algonthm A6 of [9])

Subroutine 2.

Fort=11w n do fuor j=1w »n do

1 S

Y= —I(B, - X au il (15a)
oy Kz
X, =¥, AX, {15b}

As a result the current box 1s reduced in size
By i hundiling wequatiies (1)
Subrourine 1.

Lach inequality {1 b) 15 hneanzed in the form (4) to get
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n
L{X)=Y ayx; + B;<0, x;eX, (16
2=l
Now for /=1 to n we solve the inequality
a,¥,+5,s0 (17a)
for ¥,as shown in [3] with
- n
S,=Ya;X,+85 (17b)
k=1
key
For each 7, we update
X;=¥;nX, {17¢)

and use this updated interval in (17b) when ;> |

This process 1s repeated forall i=1,... r
4. ALGORITHM OF THE METHOD

The algonthm of the present ilerative method 15 based on the
execulion. at each ierauon, of several basic procedures.

Let X< X'” be the current box 1o be analyzed. 1f A’ is strictly
teasible [3], then the lollowing two procedures are carried out
(otherwise the 1terative process continees with Procedure 3 10 be
presented below ).

Procedure 1.

{Monotomiciry test [ 1], (3] If for some §
G(X)>0 or GiX0O {18}

where GgX) 15 the nterval extension of dpyidx then X is
discarded. To namower G{X) and, hence, 10 improve the
effectiveness of the monotonicity test, & X} are computed using
optimal poles [4].

Procedure 2.

Let :q, denole an upper bound on the giobal mimmum qaa .
obtained al a previous ileration (al the {irst ileration g, 1s sel 1o
+ea). Now we compule tpu(xcj where x° is the center of X and
updale ¢, 1e.

@y = 0o, if PoX)< By, (19)
otherwise ;.r‘t, remains unchanged.
Procedure 3 .
i Extended unfeasibility test)
Let

PolX) = Pl X1y 20

If for some i from 0.1 .....r

P(X)>0 (21}
the current box X is discarded.

If one of the above three tests (18}, (19) or (21) 15 satisfied, a new
box X is retrieved from a queue (J of boxes 10 be processed and
the iterative process continues with checking feasibility.
Otherwise, we proceed to the following procedure.

Procedure 4.
We call Subroutine | to set 1p and solve LP problem (8) (or (9)).
Procediire 5.

Call Subroutine 2 to apply constraint propagation {CP} to a system
of equalitics.

Procedure 6.
Call Subroutine 3 to apply CP to a system of incqualities.

Remark. The remaining steps of the algorithm of the present
method such as control of the accuracy, splitting the current box
whenever necessary etc. are omitied for space reasons.

5. NUMERICAL EXAMPLES

The examples given below have been solved by the following twe
methods:

- method M1 which is based on constrainl propagation using the
mean-vafue form (2) a: linearization of each noniinear equatton;

- the present method (Jenoted as method M2) which appeals  to
the alternative linearization (4), linear programming and
constraint propagation.

The dala about the results include: number of splits (denoted as
$}, number of evaluations of all nonlinear functions (denoted as
F), number of all interval gradients (if using M1} or all interval
forms (4} {for M2) (denoted by the same symbol G since form (4)
requires approximately the sume amount of computalion as
interval gradients} and computer ime T in seconds needed to
solve the global optimization problem considered within desired
accuracy. The examples were run on a relatively slow 166 MHz
PC using an interpreter of EXCEL.

Example 1.
The function 1o be minimized is [3]
Polx= 2 636 + 12 +6x% +6x2 (222)
subject to the constraints
px=1- 16X —25% <0
P2000= 135 — 145 +85% — 400 < 0 (22b)
ExX=Xx%-450

For this example, the absolute accuracy (upper bound minus lower
bound on the global minimum) was chosen 10 be 107 . We give
data about 8, F, G and T for iwo initial boxes whose side are [-2,
4] and {-10°%, 10%), respectivety:
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Table !
8 F G T
M1 1050 §411 8397 7
M2 1050 2115 8437 6
MI 2713 21703 21653 18
M2 2381 4739 19038 14

Example 2

in this example [12]

@ulxi={xy -0y + 5ix; - 12y° +.\‘it +3xy -1 1y +
|0_1_:' + T.té +a3 ~dygin =10y, -8y

@in= 2.lf + 3.1-_'3 +1, +4.1§ +5x - 12750

@it =Ty » I+ ][].l; +x,—x5 - 28250
1101 = 23 w13 463 By~ 19650

Pyl = 4_113 + u =3yxa 4+ 2,\'3: +3x, ~ilv; 50

For this example, the accuracy measure was the relative accuracy
tabsolute accuracy oser absclute value of the mean of upper and
lower bounds  and was chosen 1o be 0.01.

Tuble 2
5 F G T
. i k.t 118727 118727 292
M2 8074 16146 R0738 J43

The above two  examples (as well as others nol reported here)
confirm the expected efTect of enhanced numencal efficiency of
the present method as compared with other intenal metheds of
the same class.

6. SUMMARY

A mew mterval method  fur globally  sulving  inequainy-
constramed opumization problems defined as m (1) bas been
suggested. The method has une major leature which disungushes
it favorably frem other known inmenval methods for global
opumization. [ consists i the fact that the interval extensions
@®,(X) of the functions @, (x}, ¢ = Q..r. assoclated with the
optimization problem, are determimed an a new way, using the
recently suggested linear interval form (4). The new form differs
from the known form (2) 1n that the coeflicients o, belore the
variables 1, are real numbers and only the addune term 8 15 an
interval while in (2) all the coeflicients are intervals and only the
additive term 15 a real number.

The specific feature of form (4} has permitted the development
of two lechniques aimimg to speed up the computation: Linear
programming (in solving the associated system of nonlinear
equanions (5)) and constramt propagation (fer handling both (5)

and the system of nonlinear incqualities {1b}). Expenmental
evidence scems (o indicate thal the new method's performance is
betier than methods based on the traditional form {2).

An improvement of the numerical efficiency seems possible by
generalizing the linear programming approach 1o the system of
nonhincar inequalilies associaled with the optimization problem
considered.
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