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ABSTRACT

An interval method is suggested for glabally solving optimization
probiems of the following type. minimize a given objectlive
function subject to both functienal mequality constraints and
simple bounds on the vanables. The present method appeals to a
new interval hinearnization of each nenlinear function and is based,
essenlially, on two computaton tlechnigues: linear programming
and consirnt propagation. The use of these techniques in the
computational scheme of the present method seems 10 lead 1o
impraved performance as compared: 10 other known interyval
methods of the same class.

1. INTRODUCTION

Interval methods (methods applying mterval analysis techmigues)
are capable of globally salving vanous optimizaton problems
with mathemaucal certainty {13 (5]

In this paper. 2 new ntersai method 1y supgested for global
solution of the  following  nequ ity -consirnng optinuzauon
problem

Mimimize

Pplx) {lay

subject b the constraints

@AxIE0, =100 r tiby
ol
ve Ao R (e
-0
where 15 g n-dimensional vector and X' s g given imal

search region (a boad The luncuon m {lu) 15 assumed
S

cuntinuously differentiable in '™ while these in ¢ 161 can be only

cenunuous.

Various methods have been sugpested for soly ing (1) globally [1)-
[5]. Let fiv) denote any funchion in (1), Known inters al methods
for salving {1y are all based on the lineanzation of f 0 A as
follows:

n
A= iy ;+Z GIYKA, - 1) {2)

i=t

where x; are the components of the center v of the box
A=A X with components A, and GUHA'} 1 the interval
extension of the denvative gtx)=dfiéh, or . better. the inlerval

extension of the comesponding slope {3] in A (ather more
sophisucated extensions of the 1vpe (2] have also been suppested
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and used [I]-[5)). An elaborate algorithm fur sulving (1) by
applying {2) 15 presented in [3]. It is, however, too complicated for
practical purposes. Indeed. It involves as an integral pant a
procedure for solving a nonlinear sysiem derived on account of
the so-called Fritz-John conditiens {3). Since (Ic) 15 in facl the
shon notation of 2 inequalines:

X-0<0, i=1a (3a)

- €0, i=1..» (3b)

=4

where z and x, are the end-points of X, the Fri-John system
will be a system of m equations m m unknowns with
m=3n+r+|. To reduce the amount of compulation required. an
approach called “peeling of the boundan® which skips the
inequaliies (3) has been proposed in [5]. However. the simpler
problem (la). (1B} 15 10 be solved 3" umes wiich 15 still
prohibitively inefMicient for larger n.

Recently. a new approach 10 construcling mienal methods for
global optimization has been proposed in (6], 11 1s based on a new
1ype of linear interval hineartzation of fta) 1n A in the form:

L
Fix)= Z A, +B. 1€l 4
iz

where o, are real numbers and only # 15 an interval,

In this paper, a method for solving (1) 1% suggested. [0 appeals to
Imesnzation () and uses. essenualiy, the following two
techmiques: hnear programming and construni propagation. The
combined eflect of the use ol these lechniques tn the
computational scheme of the new method seems (o lead 1o
tmproved performance as compared 1o other known interval
methods of the same ciass.

2. LINEAR PROGRAMMING APPROACH

In this section, we formulate the fmear programming (LP}
problem 10 be mcorparated inte the computational scheme of the
new combined method.
Let A'g V'™ and

gix)=0, xe X {5)

where  gix)= g {x)..g,(x)} 15 the gradiem of Ppix). The
LP problem to be set up and solved at each iteration of the
ophmizatien method is refated to solving (5yand wiil be presented
in the furm ol the fallowing subroutine.
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Subroutine 1.

It is assurned thal using the approach of [7]-[10] the functions
gi(x) of (5} have been linearized by the form (4).

Step 1. Form the (corresponding te X7 real matnx A ={-a;,} and
the interval vector £ and set up the system

—-Ax+B=0. xe kX (L))

“Correct” 8 (1l postible) by compuling

B'=AX, B=8'NnBEB &
Srep 2. (Start of the choice of the objective function for the LP
preblem; Compute

Yo =dAx. . d=y . -b,

{ x,. and A are the centers of X' and 8, respectively) and find
dy = max{|d,l‘ i=1.n
and the commesponding index ) = 4 . So
dy =dysignid, ).
If o, <0 then goto next step, else go Lo siep 4.

Stepr 3 tConunuaiion o the chorce of the LP objgetve funct:on
and construction of the LP problem). Form the following P
problem

L
f=b = z’:.",rJ = max {8a)

1=l

e, =dg . i=lean (¥b)
—Zu”.l';'Ph‘:U. izk, i=Ll..n (8c)

b eh %)

(o to step 5.

Step 4 In thas case
m
f=h= ZC,J:, =nmn 19a)
1=

and (9b}. t9¢) and (¥d) are as in (8). However, as s well known,
problem (%) can be wrnitten eguivalently as a max problem (%)
Thus, the solution of (9) can be carmied oul 10 the same way as 1n
the previous slep.

Step S (Discarding A). Stan solvimg LP problem (8) for (93 using
the dual LP method. In this methed, £ for problem (%) 15 reached
from above, 1.e.

h2f. l=01. .. (10)

where f; is the value of the objective function al the #th LP
uteratien. Thus, of at some iteration (for 8, =[8,, Et ]

fr <8, i
then obviously the maximuem value

f<8; (2
This means that the mitial system (6} is incompatible. Also. f at
some ileration, the second method shows incompatibiliny of

problem (8), the iteranons are stopped and the cument X s
discarded.

Siep 6. (Reducing By ). If {dealing wath (8)) we reach the
maximum value f, then obviously

[ =b, < By (13)
and we can update (reduce) B, by putting
B, =|B,.b) (14a)

It 15 casily seen that in case of problem (9) B, 1s updated as

follows
B, =|h; . Bi] (14b)

Using consiraint propagation we can now reduce X as will  be
shown in the next section.

3. CONSTRAINT PROPAGATION

This techmiyue has already been applied in the context of solving
systems of nonlinear equations wsimg hineanzaton {2y {11] or
Linearization (4) [9).

For the purpose of global opumization we apply the constraint
propagauon (CP)iechmigue in the fellowing 1wo cases.

A) fnsofving svstem (5).

In this case, the CP approach s apphied when the LP algonthm
lerminates tn Step b We start wih updating vecior B as shown in
{14} We then continue with the following subroutine 1as 1n
algonthm A6 of [9])

Subroutine 2.

Fort=11w n do fuor j=1w »n do

1 S

Y= —I(B, - X au il (15a)
oy Kz
X, =¥, AX, {15b}

As a result the current box 1s reduced in size
By i hundiling wequatiies (1)
Subrourine 1.

Lach inequality {1 b) 15 hneanzed in the form (4) to get
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n
L{X)=Y ayx; + B;<0, x;eX, (16
2=l
Now for /=1 to n we solve the inequality
a,¥,+5,s0 (17a)
for ¥,as shown in [3] with
- n
S,=Ya;X,+85 (17b)
k=1
key
For each 7, we update
X;=¥;nX, {17¢)

and use this updated interval in (17b) when ;> |

This process 1s repeated forall i=1,... r
4. ALGORITHM OF THE METHOD

The algonthm of the present ilerative method 15 based on the
execulion. at each ierauon, of several basic procedures.

Let X< X'” be the current box 1o be analyzed. 1f A’ is strictly
teasible [3], then the lollowing two procedures are carried out
(otherwise the 1terative process continees with Procedure 3 10 be
presented below ).

Procedure 1.

{Monotomiciry test [ 1], (3] If for some §
G(X)>0 or GiX0O {18}

where GgX) 15 the nterval extension of dpyidx then X is
discarded. To namower G{X) and, hence, 10 improve the
effectiveness of the monotonicity test, & X} are computed using
optimal poles [4].

Procedure 2.

Let :q, denole an upper bound on the giobal mimmum qaa .
obtained al a previous ileration (al the {irst ileration g, 1s sel 1o
+ea). Now we compule tpu(xcj where x° is the center of X and
updale ¢, 1e.

@y = 0o, if PoX)< By, (19)
otherwise ;.r‘t, remains unchanged.
Procedure 3 .
i Extended unfeasibility test)
Let

PolX) = Pl X1y 20

If for some i from 0.1 .....r

P(X)>0 (21}
the current box X is discarded.

If one of the above three tests (18}, (19) or (21) 15 satisfied, a new
box X is retrieved from a queue (J of boxes 10 be processed and
the iterative process continues with checking feasibility.
Otherwise, we proceed to the following procedure.

Procedure 4.
We call Subroutine | to set 1p and solve LP problem (8) (or (9)).
Procediire 5.

Call Subroutine 2 to apply constraint propagation {CP} to a system
of equalitics.

Procedure 6.
Call Subroutine 3 to apply CP to a system of incqualities.

Remark. The remaining steps of the algorithm of the present
method such as control of the accuracy, splitting the current box
whenever necessary etc. are omitied for space reasons.

5. NUMERICAL EXAMPLES

The examples given below have been solved by the following twe
methods:

- method M1 which is based on constrainl propagation using the
mean-vafue form (2) a: linearization of each noniinear equatton;

- the present method (Jenoted as method M2) which appeals  to
the alternative linearization (4), linear programming and
constraint propagation.

The dala about the results include: number of splits (denoted as
$}, number of evaluations of all nonlinear functions (denoted as
F), number of all interval gradients (if using M1} or all interval
forms (4} {for M2) (denoted by the same symbol G since form (4)
requires approximately the sume amount of computalion as
interval gradients} and computer ime T in seconds needed to
solve the global optimization problem considered within desired
accuracy. The examples were run on a relatively slow 166 MHz
PC using an interpreter of EXCEL.

Example 1.
The function 1o be minimized is [3]
Polx= 2 636 + 12 +6x% +6x2 (222)
subject to the constraints
px=1- 16X —25% <0
P2000= 135 — 145 +85% — 400 < 0 (22b)
ExX=Xx%-450

For this example, the absolute accuracy (upper bound minus lower
bound on the global minimum) was chosen 10 be 107 . We give
data about 8, F, G and T for iwo initial boxes whose side are [-2,
4] and {-10°%, 10%), respectivety:
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Table !
8 F G T
M1 1050 §411 8397 7
M2 1050 2115 8437 6
MI 2713 21703 21653 18
M2 2381 4739 19038 14

Example 2

in this example [12]

@ulxi={xy -0y + 5ix; - 12y° +.\‘it +3xy -1 1y +
|0_1_:' + T.té +a3 ~dygin =10y, -8y

@in= 2.lf + 3.1-_'3 +1, +4.1§ +5x - 12750

@it =Ty » I+ ][].l; +x,—x5 - 28250
1101 = 23 w13 463 By~ 19650

Pyl = 4_113 + u =3yxa 4+ 2,\'3: +3x, ~ilv; 50

For this example, the accuracy measure was the relative accuracy
tabsolute accuracy oser absclute value of the mean of upper and
lower bounds  and was chosen 1o be 0.01.

Tuble 2
5 F G T
. i k.t 118727 118727 292
M2 8074 16146 R0738 J43

The above two  examples (as well as others nol reported here)
confirm the expected efTect of enhanced numencal efficiency of
the present method as compared with other intenal metheds of
the same class.

6. SUMMARY

A mew mterval method  fur globally  sulving  inequainy-
constramed opumization problems defined as m (1) bas been
suggested. The method has une major leature which disungushes
it favorably frem other known inmenval methods for global
opumization. [ consists i the fact that the interval extensions
@®,(X) of the functions @, (x}, ¢ = Q..r. assoclated with the
optimization problem, are determimed an a new way, using the
recently suggested linear interval form (4). The new form differs
from the known form (2) 1n that the coeflicients o, belore the
variables 1, are real numbers and only the addune term 8 15 an
interval while in (2) all the coeflicients are intervals and only the
additive term 15 a real number.

The specific feature of form (4} has permitted the development
of two lechniques aimimg to speed up the computation: Linear
programming (in solving the associated system of nonlinear
equanions (5)) and constramt propagation (fer handling both (5)

and the system of nonlinear incqualities {1b}). Expenmental
evidence scems (o indicate thal the new method's performance is
betier than methods based on the traditional form {2).

An improvement of the numerical efficiency seems possible by
generalizing the linear programming approach 1o the system of
nonhincar inequalilies associaled with the optimization problem
considered.
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