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Abstract. In this paper, two modifications of an interval method for global solution of sysiems of
non-linear equations are suggested. The first consists in reducing the size of the linear interval system
that is to be solved at cach iteration of the method. The second incorporates the constrainl propagation
approach in solving the reduced linear system. The moditications introduced result in a method of
improved numerical efficiency.

1. Introduction

Let w : D < R” — R" be a (at least) continuous function and let X = (X9 W XD
< D be a given interval vector (a box). Consider the following global solution
problem (GS problem).

THE GS PROBLEM. Given the function w : D < R" — R" and the interval vector
(box) XU = X[V, X®)  D. find the set Sy, XY = (V. ¥ of all reat
isolated solutions (zeros) to the system of equations

wx)=0 (1.1a)
which are contained in X'0, i.e. when

xe X0, (1.1b)

In a recently published paper [3], a new method for tackling the above GS prob-
lem was suggested. It is based on the following approach. First, the original system
(1.1} is transformed into a larger system of n” = n + m non-linear equations

flxy=0, (1.2a)

xe XO ¢ g" (1.2b)
by introducing m auxiliary variables. Each component £;(x} of f(x)}is in the so-called
semiseparable form [3]:

'

FO =3 Fi) + 3 3 el (1.2¢)

j=1 k=1 =1
k#l
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(some of the terms f;;(x;) or/and some of the products xx; may be missing). The
GS problem associated with (1.2) is then solved by an iterative method which
exploits the specific semiseparable form of (1.2). The method reduces, essentially,
to setting up and solving the following linear intervatl system

Ay = BW (1.3)

at each iteration v of the method. Here A™ is a (n + m) x (n + m) real matrix
while B is a (n + m)-dimensional interval vector. The elements of A and B
are computed using two specific procedures. Finally, the solution of the original
GS problem (1.1) is found through the solution of the augmented system (1.2).

Thus, if x* € R is a solution to (1.2), then the first » components of x* determine
a solution to (1.1).

In this paper, two modifications will be introduced into the computational scheme
of the method from [3). The first is associated with the elimination of all m auxiliary
variables from the linear system (1.3). Thus, (1.3) is transformed to a system

AMy = B (14)

of reduced n x n size. The second modification consists of applying the constraint
propagation approach to the reduced system {1.4). These modifications result in a
considerable improvement of the numerical efficiency of the original method from
[3). Numerical examples illustrating the improved version are provided.

2. Improvements
2.1. ELIMINATION OF THE AUXILIARY VARIABLES

To present this modification, system (1.3) will be rewritten in partioned form

Ay Ap ] {)’1 ] [31 }
= 21
[Am Ap |y B, @1
where the vector y| corresponds to the original vector x € R” while the components
of y» correspond to the auxiliary variables. For simplicity, A>; will be assumed to
be the unit matrix E (which, typically, is the case although the example in Section 2

of [3] shows that, in general, As» # E).
Eliminating y; in (2.1), we get

Cy1 = B) —ApB (2.2a)
where

C=A — ApAy. (2.2b)
Hence

Yi=C'B) - C'A),B,. (2.3)

Now the following n x r’ real matrix
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D ={Dy,Dy) (2.4a)
is computed with
Di=Cl, Dy=ClAp (2.4b)

whose partitioning corresponds to the partitioning of the interval vector B into By
and B,. Thus, from (2.3} and (2.4) we finally obtain

Y; = DB. (2.5)
The above formula seems to be preferable to the simpler expression

Yi=C7'F (2.6a)
where the interval vector I has been computed from (2.2a) as

F=B| — ApBs (2.6b)

Indeed, because of the subdistributivity property of interval arithmetic, the interval
vector Y1 will be, in general, narrower than the interval vector Y.

Once Y is computed, the remaining part ¥, of the interval solution ¥ to (2.1)
could be easily found (for A,z = E) as

Yo =8B, — Ay Y (2.7
ar
Y;g = ——AlelBl + [E+A2]D2]Bg. (28)

However, there is a better possibility. It is based on replacing Y; in (2.7) by the
interval vector

Zl = Yl ﬁX] (29)

where X is that part of X which corresponds to the original variables x;, i =1, ..., 1.
Since

Zict (2.10)
it follows that
Y, =By — AyZ) (2.11)

is a better choice because
Y, 1y (2.12)

The incorporation of the above modification in the computational scheme of the
method from [3] (denoted further as method M1) results in a better performance of
the method as illustrated by the following example.

EXAMPLE 2.1. The problem is to find all real solutions to the system

0,

0, (2.13a)
Xixx3—3 =0

X1+20 +x3— 6
2x1x + xX3x3 — 6
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contained in the box X‘© with components
X© =004, i=1..3 (2.13b)

The last equation in (2. 13a) is not in semiseparable form. It can, however, be readily
transformed into such form by introducing an auxiliary variable

Xq = X2X3. (2.14)
Thus, we get the augmented system

X1+212+X3—-6 0,
2x]x3+x4—6 = {0,
x1x4—3 = 0,

1]

(2.15a)

xox3 — X4 = 0.

System (2.15a) is now in semiseparable form. It corresponds to system (1.2a) for
the example considered with n = Jandm = 1.

To solve (2.15a), we have to introduce bounds on the auxiliary variables xi.
From (2.14) and (2.13b)

x© = (0,16}, (2.15b)

Now system (2.15) can be solved using method M1. The linear system approximat-
ing (2.15a) in a current box X is

X +2xa+xz = 0,

Gy1x) +dnxy + dnxs = B,

~ - = (2.16)
dyx) + a@uxy = B3,
fanxy + 43Xy + BagXa = 34.
By eliminating x4 in (2.16) we get the reduced system
ajxy +apx +apxs = by,
a1 X1 +anx: +anxs = By, (2.17a)
azx1 +apx + a3 = B3
where
aj = dij, Bi= B; (2.17b)
for the second equation while for the last equation
a3 = ay, O = —dudplda, 4B = —a33da3  Gaa, (2.17¢)
By = 93 + 53494 ! Gy (2. 17d)

The above example was solved using Algorithms Al and A2 from [31 (which are
based on setting up and solving systerm (2.16) at each iteration). It has also been
solved by a new algorithm denoted as A3 which incorporates the approach of
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Tablc 1.
Algorithm Al A2 Al
N; 206 123 88
1 (sec) 0.514 0327 0141
Nt 6 5 3

eliminating the auxiliary variables and is, therefore, based on solving the reduced
system (2.17). All three algorithms Jocate infallibly the two solutions of (2.13)

M =010,1520), ¥ =3261,0779, 1.181) (2.18)

(where the solution components are recorded to three decimal places). The desired
accuracy € was chosen to be 1074 (g is the width of the box enclosing each
solution).

Data illustrating the improved numerical efficiency of Algorithm A3 as com-
pared to Al and A2 are given in Table 1.

InTable 1, N, is the number of iterations required to solve the problem considered
within the given accuracy, 7 (in seconds) is the corresponding execution time for a
Pentium 166 MHz computer and N,, is the number of cluster boxes (boxes generated
additionally to the two solution boxes by the respective algorithm).

For comparison, the same example has been solved by Krawczyk’s method also
{its improved componentwise version [1], (2], [4)). It is worthwhile noting that the
latter method required N; = 1156 iterations to solve the GS problem considered.

2.2. USE OF CONSTRAINT PROPAGATION

The second modification is related to the application of the constraint propagation
approach in solving the reduced system (2.2).
System (2.2} is written for simplicity of notation in the form

Cy=B8. (2.19)
Actually, (2.19) stands for
Cy=bh, beB. (2.20a)

Taking into account the fact that y must remain in the current box X, (2.20a) is to
be completed with the condition

yeX (2.20b)

The problem is to find an interval solution to (2.20), that is an interval vector Y
which contains the solution set of (2.20)

S(C,B.X)={y:Cy=b, beB, ye X} (2.21)

The optimal interval solution ¥* will be the smallest interval solution still containing
S(C,B.X). It is readily seen that each component ¥* = .91 i=1,2 . ncan
be determined by solving two linear programming problems:
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¥i = min,

2.22
Cy—-b=0, vyeX, beB 2.22)

and
¥; = max,

2.23
Cy—-b=0, yeX, beB (2.23)

to find the endpoints y* and y;, respectively. Thus, computing ¥* would require
the solution of 2n linear programming problems. Such an approach to tackling
the GS problem considered seems to be rather costly since ¥* is to be computed
at each iteration v. Therefore, a simpler approach will be adopted here which is
based on computing a tight interval solution Y in a cheap manner. This is made
possible by resorting to the constraint propagation method as a preliminary stage
in solving (2.20). Several algorithms implementing the latter approach will be
presented now.

ALGORITHM A4, In this algorithm, ¥ is determined as follows. First, the optimal
solution ¥’ of (2.20a) is computed

Y =C !B (2.24)
Then
Y=Y nX (2.25)

Now Y is remained X and the iterative process continues until convergence criteria
are met. As is seen, the above algorithm does not resort to the constraint propagation
approach and is included here only for the purpose of comparing its numerical
efficiency with that of the algorithms to be presented below.

ALGORITHM AS5. This is an algorithm that is based on the following procedure
involving two stages.
Stage A. Fori=1tondo

n

Y= - [B,, -y c,-jx,,} , (2.262)
ci i
i=1

X,‘ = YI' [ X,'. (2.26]3)

It is seen that this stage implements the known interval Gauss-Saidel scheme [1],
[2], [4] (in fact, (2.26) is a simpler version since unlike other interval methods now
all the coefficients c;; are real numbers rather than intervals).

Stage B. Now procedure (2.24), (2.25) from Algorithm A4 is applied to the box
X obtained on exit from Stage A.

ALGORITHM A6. This is an extended version of the previous algorithm, in which
the first stage is modified as follows.
Stage A.Fori=1tondo

——_—j
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Forj=1tondo

R
Y; = 1 [B; — > eaXy, (2.27a)
i k]
k=1
X;:=Y;nX. (2.27b)
(In actual computation, (2.27a) is implemented in a more efficient manner by first
computing
H
S =Bi— > caXe=18,,81]. (2.28)
k#f
k=1
Then
Sy =8 + X1 — X (2.29a)
and
32 = 3[ + C,']X[ — C,'QXQ. (2.29b)

The next sums S;, j > 2 are computed in a similar way.)
Stage B. The same as in Algorithm AS.

In the algorithms presented so far, all elements of the real matrix C and the
interval vector B are computed at the start of the current iteration and remain
unchanged during the iteration. A better, equationwise (row by row) computation
of C and B is implemented in the next algorithm.

ALGORITHM 7. In this algorithm, stage A is modified in the following manner.

Initially for { = 1, we compute the first row of € and the first element of B using

the current box X. We then apply (2.27) to (hopefully) reduce X to a new box X".

Now X’ is renamed X and the second row of C and the second element of B are

determined. Now (2.27) is applied with i = 2. This process continues until { = n.
Stage B. The same as in Algorithm A6.

To illustrate the efficiency of the above algorithms, a numerical example will be
considered.

EXAMPLE 2.2. The system to be solved is
x3(6xf —25-2xf’ +24x; +6x2)—32x1x4+x5(39xf —145)+x3%6 = 0,
x3(6x7 + 12x2) — 50x0x4 + 85x5 + x1x6 = 0,
xa(16x3 +25x3 — 1) =0,
xs{13x} — 145x( + 85x; — 400) = 0,

xs(x10p —4) =0,

(2.30a)

X34+Xx+x5+x—1=0

S — - — e
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Table 2.
Algorithm Ad A5 Ab A7
N; 3233 2780 1354 473
£ (sec) 686 568 297 L1

LUBOMIR V. KOLEV

and stems from a global optimisation problem [2]. The initial box X'© has the

following components

O =x®=1-24), x©O={01] i=3..6. (2.30b)
The GS problem considered has 9 solutions:
x! = (—1.7475, 08738, 1, 0, 0, 0),
2 = (—~1.075, 05353, 1, 0, 0. 0,
X = (—0.2398, —0.05648, 0.5716, 0.4284, 0, 0),
£ = (0.06604, -0.1929, 0.834], 0.1659, 0, 0),
x5 = (02398, 005648, 05716, 0.4284, 0, O},
x® = (0, 0, 1, 0, 0, 0
1’ = (—0.06604, 0.1929, 0.8341, 0.1659, 0, 0),
£ = (1.075, -0.5353, 1, 0, 0, 0),
£ = (1.7475, —08738, |, 0, 0, 0).

They have been located by Algorithms A4 to A7 with € = 10~%. No cluster effect
has been observed. Data about number of iterations and execution time (for a
Pentium 166 MHz) required by each algorithm are given in Table 2.

It is seen that Algorithm A7 has relatively the best performance. It is interesting
to compare the above results with the result obtained by Krawczyk's method. For
the same accuracy the latter method required N; = 33089 iterations to solve the
GS problem considered.

3. Conclusion

Two modifications in the computational scheme of the interval methods proposed
in [3] for global solution of systems of n non-linear equations have been suggested.
The first consists in eliminating the m auxiliary variables from the augmented linear
interval system (1.3) of size (n + m) X (n+m). This leads to a reduced n x n system
(2.2} and results in speeding up the computational process. The second improvement
is associated with the application of the constraint propagation approach in reducing
the size of the box corresponding to the original variables at each iteration of the
method as implemented in Stage A of the Algorithm A7 suggested in this paper.
The combined effect of the two modifications results in a method of improved
efficiency which is confirmed by a numerical example.
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