
An improved algorithm for 
computing Steiner minimal 
trees in Euclidean d-space 

Marcia Fampa and Kurt Anstreicher

VICCOC, Vienna, December 2006



A Feasible Solution

The Euclidean Steiner Problem
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Steiner point



Determine:

The number of Steiner points to be used

The arcs of the tree

Geometric position of the Steiner points 

Topology

The Euclidean Steiner Problem



Steiner Tree/Topology
• A Steiner Tree (ST) is a tree that contains the N given 

terminals and k additional Steiner points, such that:
– No two edges meet at a point with angle less than 120º.
– Each terminal point has degree between 1 and 3.
– Each Steiner point has degree equal to 3.
– k ≤ N-2.

• A Full Steiner Tree (FST) is an ST with the maximum N-2 
Steiner points.

• A Steiner Topology (Full Steiner Topology) is a topology 
that meets the degree requirements of an ST (FST).



Exact Algorithms

• Extensive literature elucidating properties of SMTs in the 
plane that do not extend to d>2.

• 1961 Melzak
• 1985 Winter – GeoSteiner Algorithm
• 2001 Warme, Winter and Zacharisen - version 3.1of the 

GeoSteiner (10000 terminals solved)

ESP in the plane



Exact Algorithms
GeoSteiner Algorithm



Exact Algorithms

• Find all Steiner topologies on the N given terminals 
and k Steiner points, with k ≤ N-2.

• For each topology optimize the coordinates of the 
Steiner points.  

• Output the shortest  tree found.

General d-space: Gilbert and Pollak (1968)



Degenerate Steiner Topologies
• A topology is called a degeneracy of another if the former can be 

obtained from the latter by shrinking edges. 

• Fact: each Steiner topology is either a full Steiner topology or a 
degeneracy of a full Steiner topology.
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degenerate Steiner points



Exact Algorithms

• Find all  Steiner topologies on the N given terminals 
and k Steiner points, with k=N-2.

• For each topology optimize the coordinates of the 
Steiner points.  

• Output the shortest  tree found.

Full



Full Steiner Topologies
• The total number of full Steiner topologies for a graph 

with N terminals is given by 

f(2)=1, f(4)=3, f(6)=105, f(8)=10395, f(10)=2,027,025, f(12)=654,729,075 

(2N-4)!
2N-2(N-2)!
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Math Programming Formulation for ESTP
Fampa and Maculan (2004)



General d-space: Smith (1992)

• An implicit enumeration scheme to generate full 
Steiner topologies and a numerical algorithm to 
solve the ESP for a given topology. 

• Computation of SMTs on vertices of regular 
polytopes led to disproof of Gilbert-Pollak
conjecture on “Steiner ratio” in dimensions d>2.

Exact Algorithms



Smith (1992)

Enumeration Tree
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• Nodes at level k of tree enumerate full Steiner 
topologies with k+3 terminals, k = 0,1,…, N-3.

• Children of a given node are obtained by merging 
a new terminal node with each arc in current FST.

• Good: Merging operation cannot decrease
minimum length of FST  - allows pruning!

• Bad: No easy way to account for effect of missing 
terminal nodes.

• Ugly: Growth of tree is super-exponential with 
depth, and problems get larger at deeper levels.

Enumeration Tree



Problem for a Given Topology
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where:

Topology T with k Steiner points, 
k+2 terminals and n edges (n=2k+1)



The Merging Operation
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Fixing Variables 

where:

Let:
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• In Smith+ use conic interior-point code (MOSEK) 
to obtain bounds on minimum length tree for given 
topology. Also use MOSEK to solve subproblems
with fixed dual variables.

• Choose next terminal node to add so as to 
minimize number of children created/maximize 
sum of child bounds (strong branching). Note must 
extend Smith’s enumeration argument to allow for 
varying order in which terminals are added!

Smith versus Smith+



Computational Results
Instance from OR-Library with 12 terminals

156661Total
285209

0.97310.850.7778
0.99650.560.8547
0.913790.550.8346
0.932970.630.6755
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Nodes on the B&B Tree
OR-Library
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CPU Time (seconds)
OR-Library
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Effect of dimension d

Average nodes/time for 5 randomly-generated instances with 
10 terminals in Rd (d=2,3,4).

4.44,680.520,805.650.89,250.0470,321.85

2.85,735.616,153.026.913,685.6368,762.84

3.1753.52,334.133.41,652.455,222.23

10.568.4717.8160.2105.016,821.62

FactorSmith+SmithFactorSmith+Smithd

Average CPU secondsAverage B&B nodesDimension



• Conic formulation provides rigorous bounds.
• Fixing dual variables allows for estimate of effect 

of next merge via solution of smaller problem.
• Novel setting for strong branching; effective in 

reducing size of the tree.
• More to do! Key problem with use of Smith’s 

enumeration scheme is approximating the effect of 
terminals that are not present in partial Steiner 
trees. May also be possible to use geometric 
conditions that are valid for d>2.

Conclusions




