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This talk will:
e compare local and global optimization;

e discuss heuristic, deterministic, and
automatically verified algorithms;

e briefly review interval algorithms for
global optimization;

e touch on the state of the art.

e time permitting, preview the Fortran
90 software INTOPT_90.
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Local Versus Global
Optimization

, critical points

LN

s /

e

local minima global minimum

INTOPT,9O October, 1997 Marquette—2



Local Optimization Versus
Global Optimization

Local Optimaization

e The model is steepest descent with
univariate line searches (for monotone
decrease of the objective function).
(Start a ball on a hill and let it roll to
the bottom of the nearest valley.)

e Algorithm developers speak of
“globalization,” but mean only the
design of algorithm variants that
increase the domain of convergence.
(See J. E. Dennis and R. B. Schnabel,
Numerical Methods for Unconstrained

Optimaization and Nonlinear Least
Squares, Prentice—Hall, 1983.)

e Algorithms contain many heuristics,
and do not always work. However,

many useful implementations exist.
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Local Optimization Versus
Global Optimization

Global Optimization

e is a much harder problem. Progress has
accelerated with increases in computing
power.

e Early milestones are L. C. W. Dixon
and G. P. Szego, Towards Global
Optimization (North—Holland, 1975),
and Towards Global Optimization 2
(North—Holland, 1977).

e Two types of algorithms: stochastic
and deterministic.

e Deterministic algorithms can be either
rigorous or heuristic.
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Global Optimization

Stochastic Algorithms

Monte-Carlo search: Random points
are generated in the search space. The
point with lowest objective value is
taken to be the global optimum.

Simulated annealing: is similar to a
local optimization method, although
larger objective values are accepted
with a probability that decreases as the
algorithm progresses.

Genetic algorithms: Attributes, such as
values of a particular coordinate,
correspond to particular “genes.”
“Chromosomes” of these genes are
recombined randomly, and only the
best results are kept. Random
“mutations” are introduced.
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Global Optimization

Deterministic Optimization

e involves some kind of systematic global
search over the domain.

e The various algorithms rely on
estimates of the range of the objective
function over subdomains.

e Some algorithms (due to Mladineo,
Schubert, Wood, etc.) rely on
Lipschitz constants to obtain estimates
of ranges.

e Bounds on ranges or approximate
bounds on ranges are also obtained
with
outwardly rounded interval arithmetic
or non-rigorous interval arithmetic,
respectively.
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Deterministic Global
Optimization

Interval Methods

e Evaluation of a an objective function
»(X) at an interval vector X gives
bounds on the actual range of ¢ over X.

— If directed rounding is used, the bounds

rigorously contain the mathematical range.

— The bounds, in general, are overestimates.

o If the lower bound of ¢(X) is greater
than a previously computed objective
value ¢(X), then X can be discarded.

e Interval Newton Methods, combined
with directed rounding, can prove
existence and uniqueness of critical
points, as well as reduce the size of
regions X.
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Global Optimization

Hybrid Stochastic / Deterministic
Algorithms

Recently, several people have combined
statistical methods with deterministic
methods.

e Janos Pinter uses a statistical model to
estimate local approximations to
Lipschitz constants for a global search.

e Donald Jones constructs a cumulative
statistical model of of the objective,
and uses deterministic global
optimization with a simpler objective
to determine optimal placement of the
next sample point.

e Kaj Madsen uses multiple starts of a
local optimizer to simulate a rigorous
global search with interval methods.
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Hybrid Stochastic /
Deterministic Algorithms

Janos Pinter’s Approach

e Has the structure of a rigorous global
search.

e Is only heuristic, but is nonetheless
successful at solving many practical
problems.

e Has solved problems in hundreds of
variables, including some long-standing
open mathematical (geometrical)
questions (but not rigorously).

e s a mainstay of Janos’ consulting
business (his primary employment).
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Hybrid Stochastic /
Deterministic Algorithms

Donald Jones’ Work

e Begins with a statistical model with a
few points.

e Optimal placement of the next sample
point is the global optimum of a simple
quadratic.

e The quadratic is optimized with
interval techniques.

e Graphical renderings of the fitted
objective are much closer to the actual
graphs than alternate techniques.
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Hybrid Stochastic /
Deterministic Algorithms

Kaj Madsen’s Technique

e Kaj starts with an interval-based
algorithm for global optimization.

e Assuming that interval evaluations are
not available, lower bounds on the
objective function are obtained by
repeated local approximate
optimization with random starts.

e The new technique in only heuristic
(not rigorous).

e The new technique can be used for
“black box” optimization.

e Kaj compares the reliability and
efficiency of the new technique to
interval methods.
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On the State of the Art

e Minimizing a function over a compact
set in R" is an NP-complete problem.

e Thus, barring monumental discoveries,
any general algorithm will fail for some
high-dimensional problems.

e There are many practical problems
that can be solved in low-dimensional
spaces.

e Some low-dimensional problems are

difficult.

e Advances in computer speed and
algorithm construction have allowed
many more practical problems to be
solved, including high-dimensional
ones.
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Interval Methods

Advantages

easier to use: Obtaining bounds with
interval methods involves programming
the objective function, while using
Lipschitz constant-based methods may
require extensive preliminary analysis.

more efficient: Despite interval
overestimation of ranges, the
overestimation is often less than with a
fixed Lipschitz constant. (But keep in
mind the success of hybrid
deterministic / stochastic algorithms.)

more capable: With directed roundings,
interval methods cannot lie. Also,
interval Newton iteration results in
quadratic convergence effects.

INTOPT_90
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On Constraints

e Constrained problems are more
difficult, since an objective function
value ¢(X) does not represent an upper
bound on the minimum unless X is
feasible.

e The Fritz—John system (Lagrange
multipliers) may be used in the interval
Newton methods, but other techniques
must also be incorporated for practical
algorithms.

e Constraints may be handled
heuristically (by solving a perturbed
problem) or rigorously.

e Alternate techniques are available for
handling bound constraints.
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The INTOPT 90 Package

Main Features

e is in portable Fortran 90.

e solves unconstrained and constrained
problems, as well as nonlinear algebraic
systems.

e can use good initial guesses, and can
use any good local optimization
routine.

e can use constraint propagation
techniques (substitution/iteration) on
the intermediate quantities in objective
function evaluation.

e Objective function and constraints are
input simply as Fortran 90 programs.

e The algorithm is configurable.
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Use of INTOPT 90

An Example

The following file defines the objective function

H(X) = (x1 — D+ (20 — 1) + (23 — 2)?

subject to constraints

ri+as+2i—-6 = 0
ri+25-3 = 0

PROGRAM WOLFE3
USE OVERLOAD
PARAMETER (NN=3)
PARAMETER (NSLACK=0)
TYPE(CDLVAR), DIMENSION(NN+NSLACK):: X
TYPE(CDLLHS) , DIMENSION(1):: PHI
TYPE(CDLINEQR), DIMENSION(2):: G

OUTPUT_FILE_NAME=’WOLFE3.CDL’
CALL INITIALIZE_CODELIST (X)

PHI(1)

G(1)
G(2)

= XD -D*x4 + (X(2)-1)**4 + (X(3)-2)**4

X(D)*%x2 + X(2)*%x2 + X(3)**x2 - 6
X(D)**x2 + X(2)**%x2 - 3

CALL FINISH_CODELIST
END PROGRAM WOLFE3
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D.

INTOPT_ 90 Example

(continued)

. Running the above program produces

an internal representation, or code list.

. The optimization code interprets the

code list at run time to produce
floating point and interval evaluations
of the objective function, gradient, and
Hessian matrix.

. A separate data file defines the initial

search box, the bound constraints, and
the initial guess, if any.

. Separate data files supply algorithm

options, such as which interval Newton
method to use and how to precondition
the linear systems.

Excerpts from the output file follow.
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INTOPT_ 90 Example

Excerpts from the Output File
Output from RUN_GLOBAL_OPTIMIZATION on 06/19/1996 at 18:35:44.
DATA WAS TAKEN FROM DATA FILE: wolfe3.DT1
(lines deleted)

LIST OF BOXES CONTAINING VERIFIED FEASIBLE POINTS:

Box no.: 1

Box coordinates:
.1225D+01 .1225D+01 .1225D+01 .1225D+01
.1732D+01 .1732D+01

PHI:
.1026D-01 .1026D-01

(lines deleted)

Box contains the following approximate root:

.1225D+01 .1225D+01 .1732D+01
OBJECTIVE ENCLOSURE AT APPROXIMATE ROOT:
.1026D-01 .1026D-01

(lines deleted)

Total number of dense slope matrix evaluations: 116
Total number second-order interval evaluations of the

original function: 29

Total number dense interval constraint evaluations: 188
(lines deleted)

Total number of boxes processed in loop: 13

Overall CPU time: .3000D+01
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Strengths of INTOPT 90

e Problems are easy to input.

e Algorithm configuration is flexible
(good for algorithm research and for
problems with varying properties).

e Provides constrained optimization,
unconstrained optimization, and
nonlinear algebraic systems within the
same framework.

e Provides rigorous global search.
e Is portable.
e Has configurable levels of printing.

e Compiles numerous performance
statistics.

e A book explains its use and underlying
algorithms and theory (Rigorous Global

Search: Continuous Problems, Kluwer,
1996 or 1997).
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Weaknesses of INTOPT 90

e Interpretive nature of function and
derivative evaluation is slow. (Floating
point is 8 times slower than compiled
floating point, and interval is 16 times
slower than compiled floating point.)

e Does not take advantage of sparsity
structure or other special features of
the problem. (However, the user can
extend the list of elementary functions,
if he can write routines that supply
good bounds on ranges for specific
subexpressions. )

e Better local optimization routines can
be found than those presently bundled
with INTOPT 90. (However, it is
relatively easy in INTOPT_90 to replace
these routines.)
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INTOPT 90 Reference

Rigorous Global Search:
Continuous Problems, R. B.

Kearfott, Kluwer Academic
Publishers, 1996.

Contains

e An introduction to interval
methods

e An introduction to global search
algorithms

e Some specifics for INTOPT 90.
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Commericalization of

INTOPT 90

Goals

e To establish verified global
optimization and, more
generally, interval computations
in the mainstream of scientific
computing practice.

e To make verified global
optimization technology and
interval computations more
widely “available to the masses”
than before.

This is done through a Sun Microsystems
Cooperative Research contract, with
participants with varied backgrounds from

different universities.
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