Global Optimization by Multilevel Coordinate Search

Waltraud Huyer and Arnold Neumaier
Institut fir Mathematik, Universitait Wien
Strudlhofgasse 4, A-1090 Wien, Austria

(huyer@cma.univie.ac.at, neum@cma.univie.ac.at)

Abstract. Inspired by a method by Jones et al. (1993), we present a global
optimization algorithm based on multilevel coordinate search. It is guaranteed to
converge if the function is continuous in the neighborhood of a global minimizer. By
starting a local search from certain good points, an improved convergence result is
obtained. We discuss implementation details and give some numerical results.

Keywords: Global optimization, bound constraints, local optimization, coordinate
search.

1991 Mathematics Subject Classification: 90C26.

1. Introduction

Problems involving global optimization (traditionally usually minim-
ization) of a multivariate function are widespread in the mathematical
modeling of real world systems for a broad range of applications (see,
e.g., Pintér (1996)). Many problems can be described only by nonlinear
relationships, which introduces the possibility of multiple local minima.
The task of global optimization is to find a solution for with the ob-
jective function obtains its smallest value, the global minimum. When
the objective function has a huge number of local minima, local opti-
mization techniques are likely to get stuck before the global minimum
is reached, and some kind of global search is needed to find the global
minimum with some reliability. The global optimization homepage at
http://solon.cma.univie.ac.at/~neum/glopt.html contains many
commented links to online information and software packages relevant
to global optimization, and a nice recent online survey of techniques is
at http://www.cs.sandia.gov/opt/survey/.

Pintér (1996) gives a good overview of methods and software for con-
tinuous global optimization. Algorithms for solving global minimization
problems can be classified into heuristic methods that find the global
minimum only with high probability, and methods that guarantee to
find a global optimum with a required accuracy. An important class
belonging to the former type are the stochastic methods (e.g., Boender
and Romeijn (1995)), which involve function evaluations at a suitably
chosen random sample of points and subsequent manipulation of the

';:‘ © 1998 Kluwer Academic Publishers. Printed in the Netherlands.

mcs.tex; 22/07/1998; 10:49; p.1

2 Waltraud Huyer and Arnold Neumaier

sample to find good local (and hopefully global) minima. A number
of techniques like simulated annealing (e.g., Ingber (1989; 1996)) and
genetic algorithms (e.g., Michalewicz (1996)) use analogies to physics
and biology to approach the global optimum.

The most important class of methods of the second type are branch
and bound methods. They derive their origin from combinatorial op-
timization (e.g., Nemhauser and Wolsey (1988)), where also global
optima are wanted but the variables are discrete and take a few values
only. Branch and bound methods guarantee to find a global minimizer
with a desired accuracy after a predictable (though often exponential)
number of steps. The basic idea is that the configuration space is split
recursively by branching into smaller and smaller parts. This is not
done uniformly but instead some parts are preferred and others are
eliminated. The details depend on bounding procedures. Lower bounds
on the objective allow to eliminate large portions of the configuration
space early in the computation so that only a (usually small) part of the
branching tree has to be generated and processed. The lower bounds
can be obtained by using d.c.-methods (e.g., Horst and Tuy (1996)),
techniques of interval analysis (e.g., Hansen (1992)) or majorization
resp. minorization methods based on the knowledge of Lipschitz con-
stants (e.g., Pintér (1996)). Unlike heuristic methods, however, these
methods are only applicable if something about the analytical proper-
ties of the objective is known, since one needs to be able to compute
powerful and reliable underestimating functions.

The algorithm we are going to describe in this paper is an inter-
mediate between purely heuristic methods and methods that allow an
assessment of the quality of the minimum obtained; it is in spirit similar
to the DIRECT method for global optimization by Jones et al. (1993). As
the latter method, our method is guaranteed to converge if the objective
is continuous in the neighborhood of a global minimizer; no additional
smoothness properties are required. In contrast to many stochastic
methods that operate only at the global level and are therefore quite
slow, our algorithm contains local enhancements that lead to quick
convergence once the global part of the algorithm has found a point in
the basin of attraction of a global minimizer. Moreover, for all control
variables in our algorithm meaningful default values can be chosen that
work simultaneously for most problems.

In this paper, we consider the bound constrained optimization prob-
lem

min f(x) (1)

s.t. x € [u,v]

mcs.tex; 22/07/1998; 10:49; p.2

Multilevel Coordinate Search 3

with finite or infinite bounds, where we use interval notation for rect-
angular boxes,

[u,v] :=={z € R" |u; <z; <v;, i=1,...,n},

with u and v being n-dimensional vectors with components in IR :=
RU{—00,00} and u; < v; for i = 1,...,n, i.e., only points with finite
components are regarded as elements of a box [u, v] whereas its bounds
can be infinite. In the case where all bounds are infinite we obtain an
unconstrained optimization problem.

In DIRECT, a finite box is normalized to [0,1]" and partitioned
into smaller boxes. Each box is characterized by its midpoint, and
the side lengths of the boxes are always of the form 37%, k € INy.
A disadvantage of that algorithm is that infinite box bounds cannot
be handled. Moreover, since the boundary can never be reached, it
converges more slowly than necessary in cases where the minimizer
lies at the boundary. For example, in the case of functions that are
monotonous in each variable the optimizer is at a vertex, but DIRECT
converges unnecessarily slowly. Inspired by DIRECT, we devised a global
optimization algorithm, where we remedy the above shortcomings and
allow for a more irregular splitting procedure. Our algorithm is based
on multilevel coordinate search and we therefore call it MCS. Note
that this has nothing to do with multilevel optimization (cf. Vicente
and Calamai (1994) and Migdalas et al. (1998), for example); we use the
word ‘multilevel’ in a different sense. Moreover, the multilevel search
algorithm by Goertzel (1992) also uses a different notion of levels.

In Section 2, an outline of our implementation of the MCS algorithm
is given, and details are explained in Sections 3 to 5. In Section 6
we prove the convergence of our algorithm. Finally, numerical results
are presented in Section 7. Throughout the text, inequalities, abso-
lute values, max and min for vectors are interpreted in their natural
componentwise meaning.

2. The MCS Algorithm

We first give an overview of the ideas behind MCS and leave the
discussion of the details to Sections 3 to 5. There are many ways to
design algorithms based on these ideas and guaranteeing convergence
to a global minimizer (cf. Section 6). But trivial implementations are
very slow, and a number of heuristic enhancements are needed to obtain
a high quality method. We tried several variants; in the following we
describe a specific version that performed well in our tests.

mcs.tex; 22/07/1998; 10:49; p.3

4 Waltraud Huyer and Arnold Neumaier

As in DIRECT, we try to find the minimizer by splitting the search
space into smaller boxes. Fach box contains a distinguished point, the
so-called base point, whose function value is known. The partitioning
procedure is not uniform but parts where low function values are ex-
pected to be found are preferred. Since interval subdivision is also part
of what is done in branch and bound methods, our algorithm can be
regarded as branch without bound.

Like DIRECT, our algorithm combines global search (splitting boxes
with large unexplored territory) and local search (splitting boxes with
good function values). The key to balancing global and local search is
the multilevel approach. As a rough measure of the number of times a
box has been processed, a level s € {0,1,..., sSpax} is assigned to each
box. Boxes with level sy« are considered too small for further splitting;
a level s = 0 indicates that a box has already been split and can be
ignored. Whenever a box of level s (0 < s < smax) is split, its level
is set to zero, and its descendants get level s + 1 or min(s + 2, Syax)-
Thus the levels of MCS correspond to the side lengths of DIRECT, i.e.,
the boxes with small level are the ‘large’ boxes that have not been split
very often yet. After an initialization procedure, the algorithm proceeds
by a series of sweeps through the levels (cf. Section 3). The fact that
we start with the boxes at the lowest levels in each sweep constitutes
the global part of the algorithm, and at each level the box with lowest
function value is selected, which forms the local part of the algorithm.

Ratz and Csendes (1995) and Csendes and Ratz (1997) investigated
a number of rules for selecting an optimal component to bisect a box in
branch and bound methods and called these rules interval subdivision
direction selection rules. The simplest rule is the interval-width-oriented
rule, which divides the original box in a uniform way and was also
used by Jones et al. (1993). However, heuristic direction selection rules
dependent on information about the variability of f in the different co-
ordinates may yield an improvement; cf. also Hansen (1992). In contrast
to DIRECT, which usually splits a box along several coordinates, we split
along a single coordinate in each step. Information gained from already
sampled points is used to determine the splitting coordinate as well as
the position of the split. Usually a single new function evaluation is
needed to split a box into two or even three subboxes. The base points of
the descendants of a box are chosen such that they differ from the base
point of the parent box in (at most) one coordinate. Thus this procedure
of generating new function values is a variant of the standard coordinate
search method. Safeguards are incorporated to prevent splits that are
too asymmetric. They ensure that the descendants of a bounded box
will eventually become arbitrarily small after sufficiently many splits

mcs.tex; 22/07/1998; 10:49; p.4

Multilevel Coordinate Search 5

151

0.5

0e

-2 =1 L 1 L

-3 -2 -1 0 1 2 3

Figure 1. Result of MCS for the six-hump camel function.

along each coordinate and that the descendants of an unbounded box
will also shrink sufficiently fast.

MCS without local search puts the base points and function values
of boxes of level spax into the so-called shopping basket (containing
‘useful’ points). MCS with local search tries to accelerate convergence
of the algorithm by starting local searches from these points before
putting them into the shopping basket. More precisely, we first check
whether the base point of a newly generated box of level sy is likely
to be in the basin of attraction of a local minimizer already in the
shopping basket; only if this is not the case, we start a local search
from it. The local search algorithm used in our implementation of
MCS essentially consists of building a local quadratic model by triple
searches, then defining a promising search direction by minimizing the
quadratic model on a suitable box and finally making a line search
along this direction.

In Figure 1 we show the boxes obtained by MCS for the six-hump
camel function with default box bounds (cf. Section 7). The base points
are indicated by fat dots; the asterisk denotes the point obtained by
local optimization and turns out to be a global optimizer. The dashed
lines are the contour lines of the function, where the six humps are
clearly discernible.

mcs.tex; 22/07/1998; 10:49; p.5

6 Waltraud Huyer and Arnold Neumaier

3. Imitialization and Sweeps

Unlike in DIRECT, a base point can belong to more than one box, and
the base point of a box in our algorithm is usually not the midpoint
but a point at the boundary, often but not always a vertex. Moreover,
we also assign to each box an opposite point. The construction is such
that the base point x and the opposite point ¢y determine the box, and
we call such a box B[z, y].

The algorithm starts with a so-called initialization procedure produc-
ing an initial set of boxes. Whenever a box is split along some coordinate
i for the first time (either in the initialization procedure or later), this
is done at three or more user-defined values ! (where function values
are computed) and some adaptively chosen intermediate points, and at
least four subboxes are obtained. More precisely, let

uigx}<x?<...<xf"§vi, L; >3, i=1,...,n,

be given. We first evaluate f at an initial point 2° and set z* = 2.

Then, for i« = 1,...,n, f is evaluated at L; — 1 points in [u,v] that
agree with x* in all coordinates k # i. Thus we have L; pairs (2!, f!)
(l=1,...,L;) with
wy, = a (k #19),
fl = fa),

and z* = zb for some I;. The point with smallest function value is then
renamed x* before repeating the procedure with the next coordinate.
The numbers xé, Il =1,...,L;, and the indices [; are stored in an
initialization list. The choice of the initialization list is left to the user,
who may incorporate in it knowledge about the likely distribution of
good points. A good guess for the global optimizer can be used as zV.
Some possible choices are discussed in Section 7.

From the initialization list and the corresponding list of function
values, an initial set of boxes is constructed as follows. The root box is
Blz,y] = [u,v], with 2 = 2° as base point and as y one of the corners
of [u,v] farthest away from z. Note that = need not be a vertex and
that some or all coordinates of y can be infinite. For ¢ = 1,...,n, the
current box is split along the ith coordinate into 2L; — 2, 2L; — 1 or
2L; subintervals with exactly one of the l‘i as endpoints, depending on
whether two, one or none of the xﬁ are on the boundary, which means
that in addition to :L‘ﬁ, l=1,...,L; we have to split at zﬁ, 1=2,...,L;.
The additional splitting points are chosen as zf- = xﬁ_l +4F (xi — xi_l),
l=2,...,L; where ¢ = %(\/5— 1) is the golden section ratio and k = 1
or 2 is chosen such that the part with the smaller function value gets
the larger fraction of the interval. The resulting subboxes get as base

mcs.tex; 22/07/1998; 10:49; p.6

Multilevel Coordinate Search 7

4 3
1
3 3
L3 | 2 3 4 243 2 43 2
; 3
4

Figure 2. Examples for the initialization procedure.

point the point 2’ obtained from the current x = z* by changing x;
to the a:ﬁ that is a boundary point of the corresponding ith coordinate
interval, so that f(z') = f!, and as opposite point the point obtained
from y by changing y; to the other end of that interval.

The information available so far allows us to define priorities on
the coordinates. For each i, we compute the union of the ranges of
the quadratic interpolant through any three consecutive (a:ﬁ, le) and
take the difference of the upper and lower bound obtained as a crude
measure of the variability of f with the ith component. Components
with higher variability get a higher priority, and this ranking is saved
in a vector 7 such that the component with index ¢ has the 7;th highest
estimated variability. Moreover, if the x* obtained after splitting the
1th coordinate belongs to two boxes, the one containing the minimizer
of the quadratic models is taken as current box for coordinate 7 + 1.

The root box gets level 1. When a box of level s is split, the boxes
with the smaller fraction of the golden section split get level s + 2 and
all other boxes get level s+ 1. Thus the current box for splitting in the
next coordinate is in any case one with level s 4+ 1, and after finishing
the initialization procedure, the first level is empty and the non-split
boxes have levels 2,...,n + 2, which implies that it is meaningful to
take smax > n. Two examples for the set of boxes, their base points
and their levels after the initialization procedure in the two-dimensional
case are shown in Figure 2, where xll = Uy, xlz = %(uz + v;), $f’ =
(left-hand side) and x} = %ui + %vi, z? = %(Uz +), 7 = %Ui + %Ui
(right-hand side); in both cases we have 20 = %(u + v).

It is easy to see the connection between the golden section split
and the assignment of levels. When a box B with level s is split along
coordinate ¢ according to the golden section split and its larger part
B’ is again split according to the golden section split along the ith
coordinate, the larger descendant of B’ has the same ith coordinate

length as the smaller descendant of B, and these boxes both have

mcs.tex; 22/07/1998; 10:49; p.7

8 Waltraud Huyer and Arnold Neumaier

level s 4+ 2. Moreover, the box with the better function value gets the
larger fraction of the interval and the smaller level because then it is
more likely to be split again more quickly, which was also the strategy
adopted in DIRECT.

Any choice of xi including the endpoints u;, v; in the list guarantees
that, in the simple case that f is monotonous in each variable, the final
x* of the initialization phase is already the global minimizer.

At least three values of xi are needed in order to determine the ranks
m; by quadratic interpolation. It is reasonable to make the first splits
along each coordinate at some predetermined values since heuristic
determination of an optimal split of a wide interval would not be very
reliable anyway.

After the initialization procedure, the branching process proceeds by
a series of sweeps through the levels. A sweep is defined by the following
three steps.

STEP 1. Scan the list of non-split boxes and define a record list
containing for each level 0 < s < spax & label bg pointing to a box with
the lowest function value among all boxes at level s. If there is no box
at level s, set by = 0. Initialize s to the lowest level with bs # 0.

STEP 2. The box with label b, is a candidate for splitting. If the
box is not split (according to the rule given in Section 4), its level is
increased by one and possibly bs11 has to be updated. If the box is
split, mark it as split and insert its children. Update the record list if
any of the children yields a strict improvement of f on its level.

STEP 3. Increase s by 1. If s = spax, start new sweep. Else if by = 0
go to Step 3, else go to Step 2.

Clearly, each sweeps ends after at most syax — 1 visits of Step 3.

4. Splitting

Instead of storing the box bounds for each box we store information on
its history (label of the parent box, splitting index, splitting value, a
label identifying which of the many children it is etc.). This keeps the
amount of storage proportional to the number of function evaluations
and allows us to recover information to build a separable quadratic
model by going back in the history of the box. When a box of level
$ < Smax 18 a candidate for splitting (cf. Section 3), we recover its base
point z, the opposite point y and the number n; of times coordinate j
has been split in the history of the box. We distinguish two cases.
CASE 1 (splitting by rank). If

s > 2n(minn; + 1), (2)

mcs.tex; 22/07/1998; 10:49; p.8

Multilevel Coordinate Search 9

the box is always split, and the splitting index is a coordinate ¢ with
n; = minn;.

CASE 2 (splitting by expected gain). Otherwise, the box may be
split along a coordinate where the maximal gain in function value is
expected according to a local separable quadratic model obtained by
fitting 2n+ 1 function values. However, if the expected gain is not large
enough, the box is not split at all but its level is increased by one.

A Dbox that is not eligible for splitting by expected gain will even-
tually reach level 2n(minn; + 1) + 1 and be split by rank provided
Smax 18 large enough. Thus, for sp,ax — 00, the splitting by rank rule
guarantees that each coordinate is split arbitrarily often. (Many other
thresholds in place of (2) would provide the same conclusion; cf. also
Section 6.)

In order to handle correctly the adaptive splitting points and un-
bounded intervals we introduce some more notation. Suppose that we
want to split the ith coordinate interval

D{xi7 yz} = [min(xia yi)v max<$i7 yl)]

for ; € IR, y; € IR, and suppose that z; is the ith component of the
base point of the box being considered. Since the descendants of a box
should shrink sufficiently fast, we may not split too close to z;. If y;
is large, we also do not want the new component z to be too large
and therefore force it to belong to some smaller interval []{¢’,£"}. We
choose this interval according to

" = subint(z;, y;), & =2+ (£ —2)/10, (3)
where
sign(y) if 1000|z| < 1, |y| > 1000,
subint(z,y) := { 10sign(y)|z| if 1000|z| < 1, |y| > 1000|z|, (4)
Y otherwise.

We are now ready to describe the two splitting rules in more detail.

4.1. SPLITTING BY RANK

Let s > 2n(minn; +1). This means that, although the box has already
reached a rather high level, there is at least one coordinate along which
the box has not yet been split very often. Then we select the splitting
index ¢ among the indices ¢ with smallest n; as the one with lowest ;
(and hence highest variability rank). The name ‘splitting by rank’ thus
refers to the ranking of the coordinates by n; and ;.

If n; = 0, the splitting is done according to the initialization list at
:nﬁ, [=1,...,L;, and at the golden section split points, as discussed

mcs.tex; 22/07/1998; 10:49; p.9

10 Waltraud Huyer and Arnold Neumaier

in Section 3, and the new base points and opposite points are defined
as before. The boxes with the smaller fraction of the golden section
split (and thus larger function values) get level min(s + 2, Spax), and
all other ones get level s + 1.

If n; > 0, the ith component ranges between z; and y;, and the
splitting value is chosen as z; = xi+§(§”—xi), where £ := subint(x;, y;)
is given by (4). The box is split at z; and at the golden section split
point, and we obtain three parts with only one additional function
evaluation at the point z’ obtained by changing the ith coordinate
of x to z;. The smaller fraction of the golden section split gets level
min(s + 2, Smax), and the two other parts get level s+ 1. Moreover, the
base point of the first child is taken to be x, the base point of the second
and third child is the point 2’ defined above, and the opposite points are
obtained by changing y; to the other end of the ith coordinate interval
of the corresponding box. Since this split is mainly made to reduce
the size of a large interval and not for an expected large reduction in
function value, we do not try to determine an optimal z; but take a value
that is predetermined by the box bounds. The factor % is motivated by
the fact that the box is split into three parts, where the second split is
made between x; and z;.

4.2. SPLITTING BY EXPECTED GAIN

If s < 2n(minn; + 1), we determine the optimal splitting index and
position of the split from a local separable quadratic model, which is a
reasonably simple local approximation of f. To this end we need two
additional points and corresponding function values for each coordi-
nate. Whenever we have split in the ith coordinate in the history of
the box, we obtain values that can be used for quadratic interpolation
in this coordinate. For each coordinate we take the first two points and
function values found by pursuing the history of the box back to [u, v]
since these points are expected to be closest to the base point z. For
coordinates that have not yet been split, we obtain this information
from the initialization list. Let

e(§) = flx)+) _ei(&)
i=1

be the local separable model for f(£) generated by interpolation at x
and the 2n additional points collected as above. For each coordinate 4,
we define the expected gain é; in function value when we evaluate at
a new point obtained by changing this coordinate in the base point.
Again two cases have to be distinguished.

mcs.tex; 22/07/1998; 10:49; p.10

Multilevel Coordinate Search 11

CASE 1. In the history of the current box, coordinate ¢ was never
split, i.e., n; = 0. Then we split according to the initialization list at
points where we already know the obtainable function differences, and
therefore compute the expected gain as

& =min{f! [1=1,...,L;} — fh.

CASE 2. If n; > 0, the ¢th component ranges between x; and y;, and
with the quadratic partial correction function

ei(&) = (& — i) + Bi(& — m3)°

at our disposal, we can calculate an approximation to the maximal gain
expected when changing the value of z; only. For the reasons discussed
above, we choose the splitting value from the interval []{¢’, £"} defined
by (3). Then we compute

éi= min ¢(§)
sell{e e

with minimum achieved at & = z;. If the expected best function value
satisfies

fexp = f(l‘) + 1I§nzlgn éz < fbest7 (5)

where fpest 1S the current best function value (including the function
values obtained by local optimization), we expect the box to contain a
better point and split, using as splitting index the component with
minimal é;. Condition (5) prevents wasting function evaluations by
splitting boxes with bad base point function values; these boxes will
eventually be split by rank anyway.

In Case 1 we again split according to the initialization list, and the
definition of the new base points and opposite points and the assign-
ment of levels are as before. In Case 2 we use z; as splitting value and the
box is split at z; (if z; # y;) and at the golden section split point, and we
obtain two or three parts. The larger fraction of the golden section split
gets level s + 1, the smaller fraction level min(s + 2, spax). If z; # v;
and the third part is larger than the smaller fraction of the golden
section split, it gets level s+ 1; otherwise it gets level min(s + 2, Spmax)-
Moreover, the base point of the first child is taken to be x, the base
point of the second and third (if z; # y;) child is obtained by changing
the 7th coordinate of = to z;, and the opposite points are again obtained
by changing y; to the other end of the ith coordinate interval of the
box.

If (5) is violated, we do not expect any improvement and therefore
do not split but increase the level by 1.

mcs.tex; 22/07/1998; 10:49; p.11

12 Waltraud Huyer and Arnold Neumaier

5. Local Search

The theory of local optimization provides powerful tools for the task
of optimizing a smooth function when knowledge of the gradient or
even the Hessian is assumed. When no derivative information is avail-
able but the function is known to be twice continuously differentiable,
the traditional methods are based on the employment of successive
line searches, using search directions defined by minimizing quadratic
models built from conjugate directions; cf. the direction set method
of Powell (1964) and a modification due to Brent (1973). These algo-
rithms, however, do not allow the specification of bound constraints.
Elster and Neumaier (1995) developed an algorithm for optimization
of low-dimensional bound constrained functions, based on the use of
quadratic models and a restriction of the evaluation points to succes-
sively refined grids. However, the work in that algorithm grows with
the dimension n as O(n%) and hence is unsuitable for larger dimensions.

The local optimization algorithm we are going to describe in the
sequel also makes use of quadratic models and successive line searches,
and devices to handle bound constraints are incorporated. We first
explain two important ingredients of our local search algorithm: the
procedure of building a local quadratic model by triple searches and
the coordinate search procedure.

5.1. TRIPLE SEARCH

While quadratic models are most appropriate when the function to be
optimized is smooth enough, they seem to be useful also in general (cf.
the two discontinuous examples in Table VI below). We want to use
(";2) function values to construct a quadratic model

%(IL‘ _ :L'beSt)TG(:L‘ _ l,best)’

which is hoped to be a good local approximation of f. The triple
search does not only aim at constructing a quadratic model but also at
reducing the function value.

Assume that we have three vectors z* < =™ < 2". The function
values are to be taken at points z with z; € {z!, 27 27} (hence the
name ‘triple search’) as follows. If 2°*5* denotes current best point in the
triple search, denote by (1) and 2(»?) the points obtained from zPest
by changing its ith coordinate to the other two values in {a:ﬁ, " al},
and by 2'*, k < i, the points obtained by changing the ith and kth
coordinate to the ones with the smaller q(z(®) resp. q(z®)) with the
current quadratic model ¢q. Thus we obtain the following procedure that
we are going to describe in more detail in the sequel:

g(x) = [+ 9" (x = 2") +

l

mcs.tex; 22/07/1998; 10:49; p.12

Multilevel Coordinate Search 13

£ = I
fori=1ton

compute f(z®Y) and f(x(?); compute g; and Gy

store z""Pest hut do not update zPest

fork=1toi—-1
compute g(z*1) and ¢(z*?)) from the current model

compute f(z*)

update z"*"Pest hut do not update zPest

compute Gk
end for

if xnewbest ?é .,L.best

, update 2, f and ¢1.;; end if
end for

When, for an ¢, 1 < ¢ < n, we have already computed approxima-
tions for g; and Gy, I = 1,...,i— 1, k = 1,...,[, by interpolating at
(1451) points that differ only in the first i — 1 components, and 2 is
the current best point in the triple search, we obtain approximations
for g; and Gj; by determining these numbers such that the quadratic

polynomial
1
p(g) = f(l,best) + gl(é _ :L,;Dest) + §Gzz(£ _ l’?%t)?

interpolates at (z\"7), f(z(9))), j = 1,2. If min(f(z®V), f(202)) <
f(zP*Y), we may not yet update 2P°* (this would invalidate the previ-
ous computations), but we store the new best point as ghestnew

Assume that, in addition, we have already calculated approxima-
tions for Gy, 1 <l < k—1,forak, 1 < k <i—1. Then we can
compute

, , 1 .
q(gj(k,J)) —_ f(l,best)_i_gk(xl(ck,ﬁ_:Egest)_i_ickk(xl(ckﬁ)_:Ezest)Q’ ji=1,2,

with the current quadratic model ¢, and we have q(z9)) = f(x9)),
j =1,2. Let 2% be defined as above. Then we choose G = G; such
that the quadratic model interpolates at ¥, i.e., such that the equation

F@™) = @) + gr(ziF — a2 + gi(ai? — 2P
1 » . .
+§szk (x?gk . xl]zest)Q + sz(l‘zk o ZIJEeSt)(.’Eik _ .le?eSt)
1 .
+§Gu(x;k o x};)est)Q

is satisfied. Again we do not update xzP*' but update aPestrew if y
yields a strict improvement in function value.

ik

mcs.tex; 22/07/1998; 10:49; p.13

14 Waltraud Huyer and Arnold Neumaier

After finishing the loop over k, we reexpand the model around the
new best point by

7
Ik :gk_|_Zle(x}aestnevv_x}aest)7 k=1,....4,

=1
xbest — xbestnew’ f — f(xbestnew).

It is easy to see that the above method gives the unique quadratic
interpolant to f at (";2) distinct points; in particular, we recover the
exact objective function as q(x) = f(z) whenever f is quadratic.

An optional input parameter handles the case where knowledge about
the sparsity pattern of the Hessian is assumed. If we know that G is
zero for some k < i, we can omit a step in the inner for-loop of the
triple search procedure. For sufficiently sparse Hessians, this saves a
large fraction of function values spent in the local optimizations.

In a diagonal triple search we only carry out the diagonal part of
the above algorithm and take the off-diagonal elements of the Hessian
from the previous iteration; thus only 2n additional function values are
needed.

5.2. COORDINATE SEARCH

In order to find z!,2™, 2" for the triple search, we sometimes use a
coordinate search based on a line search routine. A MATLAB 4.2 ver-
sion of the actual line search used can be obtained electronically from
http://solon.cma.univie.ac.at/~neum/software/gls. The univar-
iate line search program gls contains a parameter smaxls limiting the
number of points used for the line search. It is possible to feed other
points in addition to the starting point and their function values into
the program, and these points are included in smaxls.

A line search with smaxls = 6 is made along each coordinate. The
first line search is started with the candidate for the shopping basket.
After the line search along the first coordinate, we can take the best
point and its two nearest neighbors on both sides (or, if such points do
not exist, the two nearest neighbors on one side) as {x}, 2", z7}. The
subsequent line searches are started with the current best point ob-
tained from the previous line search. After a line search in a coordinate
i > 1, we take the best point, the starting point of the line search (if it
is different from the best point) and, if possible, the nearest neighbor
of the best point on the other side as {z}, 2, #7}. The ith coordinate
of the old zP** has to be among {xi, x", x7 } since otherwise we would

lose all points through which the surface has been fitted previously.

mcs.tex; 22/07/1998; 10:49; p.14

Multilevel Coordinate Search 15

5.3. LOCAL SEARCH

Now we have all ingredients at our disposal to describe the steps of the
local search algorithm used in our implementation of MCS.

In Step 1 below we start with looking for better points without being
too local yet and therefore determine !, 2™, 2 for the triple search by a
coordinate search. In Step 2 we calculate the minimizer of the quadratic
model, hoping that it yields a good point, and make a line search along
this direction. Step 3 controls the loop over the subsequent iterations
of building a quadratic model by a triple search (Step 5) and making a
line search (Step 6). The difference between Step 1 and Step 5 is that
in Step 5 the values for the triple search are taken at small distances
d. Step 4 takes care of the boundary.

In the following x and f always denote the current point and its
function value, respectively.

STEP 1. Starting with the candidate for the shopping basket, we
make a full triple search, where z!,z™, 2" are found by a coordinate
search as described above. This procedure yields a new point x, its func-
tion value f, an approximation g of the gradient and an approximation
of the Hessian G.

STEP 2. Initially we take d := min(v — x,x — u,0.25(1 + |z — x¢|)),
where x(is the absolutely smallest point in [u,v], and minimize the
quadratic function g(h) := f + g* h + hTGh over the box [—d, d]. Then
we make a line search with gls along = + ap, where p is the solution
of the minimization problem. The values a = 0 and o = 1 are used as
input for gls, and the new point and function value are again denoted
by x and f, respectively. Set := (fo1a — f)/(fold — fpred), where foq is
the function value of the current point at the beginning of Step 2 and
fpred is the function value predicted by the above quadratic model with
a = 1. Since r = 1 if f = fpreq, the deviation of r from 1 measures the
predictive quality of the quadratic model.

STEP 3. Stop if some limit on the number of visits to Step 3 (per
local search) or the limit on function calls has been exceeded. Also stop
if none of the components of the current x are at the boundary, the
last triple search was a full one and a stopping criterion (see below) is
fulfilled.

STEP 4. If some components of the current = are at the boundary
and the stopping criterion is fulfilled, we make line searches with at
most smaxls points along these coordinates. If the function value was
not improved by these coordinate searches, stop.

STEP 5. If |[r — 1] > 0.25 or the stopping criterion was fulfilled in
Step 3, we make a full triple search, otherwise we make a diagonal triple
search. We make these triple searches only in the coordinates ¢ such

mcs.tex; 22/07/1998; 10:49; p.15

16 Waltraud Huyer and Arnold Neumaier

that the component x; of the current x is not at the boundary. The set
{xl, 2" 27} is taken to consist of z;, max(z; — 6, u;) and min(z; + d, v;)
(resp. two neighbors at distance ¢ and 26 if z; lies at the boundary)
and § = /e, where £ denotes the machine accuracy. We obtain a new
point z and an approximation of its reduced gradient g and its reduced
Hessian G.

STEP 6. If r < 0.25, the last quadratic model was not very good and
we therefore shrink the box for minimization by setting d = d/2. On the
other hand, if r > 0.75, the search direction from the quadratic model
was rather good and we set d = 2d. We now minimize the quadratic
function ¢ given in Step 2 over [max(—d, u—x), min(d, v —z)| and make
a line search along = + ap, where p is the solution of the minimization
problem, with « = 0 and o = 1 as input as before. The quantity r is
defined as in Step 2, where now fg1q is the function value at the current
point at the beginning of Step 6, and go to Step 3.

The stopping criterion in Step 3 is defined to be fulfilled if the
function value has not been improved by Steps 5 and 6 (resp. Steps
1 and 2) or if the approximated gradient is small, in the sense that
lg|” max(|z|, |zoa]) < ¥(f — fo), where v is an input parameter of our
program and fj is the smallest function value found in the initialization
procedure. When some components of the current x are at the boundary
and the stopping criterion is fulfilled, we make an attempt in Step 4
to get away from the boundary, and when we are not successful, the
algorithm stops.

If the ratio r of the actual to the predicted gain in function value
in the previous step is far away from 1, this is an indicator that the
quadratic model was not very good and we therefore make a full triple
search. However, when r is reasonably close to 1, the last quadratic
model was a rather good approximation and we therefore save function
values by taking over the off-diagonal elements of the Hessian from the
previous quadratic model. In Step 2, the quadratic model is minimized
over a not too large initial box, and the box is made larger or smaller
depending on 7.

In Steps 2 and 6, we use a routine for indefinite quadratic pro-
gramming with bound constraints since there is no guarantee that G is
positive definite. A MATLAB 4.2 program ming for doing this is available
from http://solon.cma.univie.ac.at/~neum/software/ming/.

5.4. SHOPPING BASKET
The local searches are only carried out at the end of each sweep. Then

all candidates for the shopping basket (i.e., all base points of boxes
with level spax) that have been collected in this sweep are sorted by

mcs.tex; 22/07/1998; 10:49; p.16

Multilevel Coordinate Search 17

ascending function value. For each candidate x for the shopping basket,
we check the monotonicity properties of f between x and any point w
already in the shopping basket by evaluating f at two uniformly spaced
points between z and w to avoid unnecessary local optimization. The
procedure is described by the following four steps, where the letter x
is used for candidates for the shopping basket (and their updates) and
w denotes points already in the shopping basket. In Step 4, a new w
may be added, which has to be considered in the subsequent iterations
of Steps 1 to 4.

STEP 1. We first check whether we have already made a local search
from z. (Often a point belongs to two boxes.) If this is the case, we
take the next x and go to Step 1.

Otherwise, let the points w already in the shopping basket be sorted
by their distance to z, starting with the nearest point. For each w such
that f(w) < f(x) we do the following.

STEP 2. Compute the function value at 2’ = z+ 3 (w—=z). If f(z') >
f(z), does not lie in the domain of attraction of w. Take the next
point w and go to Step 2.

STEP 3. Compute the function value at 2 = 2+ Z(w—z). If f(2") >
max(f(x'), f(w)), set x = 2’ if f(2) < f(z), take the next point w and
go to Step 2. Else if min(f(2’), f(2”)) < f(w), all four points seem to
lie in the same valley. However, we do not discard = for local search
but set x to the value 2’ or " with the smaller function value, take the
next point w and go to Step 2. Else (there seems little point to start a
local search from x because the four function values are monotonous)
we take the next x and go to Step 1.

STEP 4. If a point = (resp. its update) survives the loop over Steps
2 and 3, a local search is started. Subsequently, we apply a procedure
similar to Steps 2 and 3 to the result = of local search in order to find
out whether we have really found a new point, and only in this case x
is put into the shopping basket.

6. Convergence of the Algorithm

If the number of levels spax goes to infinity, MCS is guaranteed to
converge to the globally optimal function value if the objective function
is continuous — or at least continuous in the neighborhood of a global
optimizer. This follows from the fact that then the set of points sampled
by MCS forms a dense subset of the search space. That is, given any
point x € [u,v] and any 6 > 0, MCS will eventually sample a point
within a distance § from z.

mcs.tex; 22/07/1998; 10:49; p.17

18 Waltraud Huyer and Arnold Neumaier

Indeed, in each sweep one box leaves the lowest non-empty level
and no box is added at that level. Each level will eventually become
empty; in particular the splitting procedure will come to an end when
all non-split boxes have level sy,x. Condition (2) for splitting by rank
together with the fact that by splitting the levels advance by at most
two guarantees that each box with level s > 2n(m+1)+2mn, m € INy,
has been split at least m times in each coordinate (proof by induction
over m). Moreover, the safeguards against too narrow splits guarantee
that the boxes containing any point x € [u,v] shrink sufficiently fast
after sufficiently many splits. More precisely, for each 6 > 0 and i =
1,...,n, there exists an m;(d) € IN such that the ith side length of the
box containing x is less than § if it has been split at least m;(d) times
along the ith coordinate.

These properties give the following convergence theorem for MCS
without local search.

THEOREM 1. Suppose that the global minimization problem (1) has
a solution & € [u,v], and that f : [u,v] — IR is continuous in a
neighborhood of &, and let € > 0. Then there exists an sy such that
for each smax > So, the algorithm will eventually find a base point x
with f(z) < f(Z) + €; i.e., the algorithm converges if the number of
levels tends to oco.

The worst case of ‘eventually’ in the above theorem is reached when
all levels s < smax are empty and the algorithm is done. It is not
difficult to show that the number of sweeps needed for finding such a
point is at most (p*~! —1)/(p — 1), where p is the upper bound on
the number of boxes generated in one splitting step (determined by the
initialization list since a ‘regular’ split does not produce more than 3
boxes). Of course, such an exponential worst case bound is expected in
view of the NP-hardness of the global optimization problem (cf. Vavasis
(1995)).

For the MCS algorithm with local search we obtain a stronger result
if we make the obviously idealized assumption that the local search
algorithm reaches a local minimizer after finitely many steps if it is
started in its basin of attraction and if the function values at the
nonglobal local minimizers are sufficiently separated from the global
minimum.

THEOREM 2. In addition to the assumptions of Theorem 1, assume
that there is an € > 0 such that f(y) > f(Z)+ e for any nonglobal local
minimizer y and for any y € [u,v] with sufficiently large norm. Then
there exist numbers L and S such that, for any Smax > L, MCS with
local search finds a global minimizer after at most S sweeps.

mcs.tex; 22/07/1998; 10:49; p.18

Multilevel Coordinate Search 19

Note that the assumption on f only excludes pathological optimiza-
tion problems where a global optimizer is at infinity or where the set
of nonglobal local optima has the global optimum as an accumulation
point.

7. Numerical Results

7.1. TEST FUNCTIONS

Jones et al. (1993) gave an extensive comparison of their DIRECT meth-
od with various methods on seven standard test functions from Dixon
and Szegd (1978) and two test functions from Yao (1989). Since our
MCS algorithm is based on important insights from Jones et al. (1993),
we first consider the same test set to evaluate the efficiency of MCS.
For each test function, the dimensions and box bounds, used by Jones
et al. (1993) but inadvertently omitted in Jones et al. (1993), are given
in Table I. We thank Don Jones for providing us with the code of the
test functions.

Table I. Dixon and Szegd (1978) functions: dimensions and box bounds.

Label Test function Dimension Default box bounds
Sm (m =5, 7 or 10) Shekelm 4 [0,10]*

Hn (n =3 or 6) Hartmann n [0,1"

GP Goldstein—Price 2 [-2,2]

BR Branin 2 [—5,10] %[0, 15]
C6 Six-hump camel 2 [—3,3]x[-2,2]
SHU Shubert 2 [~10,10]?

Table II records the number of function calls needed for convergence.
This is not the only way of assessing the quality of an algorithm,
but it is an important one in the case of most real life applications,
where function evaluations are expensive. All but the last four lines
of Table II are taken from one of the tables of results of Jones et
al. (1993); missing entries were not available from the literature. The
first 11 algorithms already appeared in the 1978 anthology edited by
Dixon and Szegd (1978) and are therefore somewhat old. The fourth
last line contains results for the differential evolution algorithm DE
by Storn and Price (1997); we used the MATLAB program devec2.m
from http://http.icsi.berkeley.edu/~storn/code.html with the

mcs.tex; 22/07/1998; 10:49; p.19

20

Waltraud Huyer and Arnold Neumaier

Table II. Number of function calls for various methods compared to MCS.

Method S5 ST S10 H3 H6 GP BR C6 SHU
Bremmerman (a) (a) (a) (a) (a) (a) 250

Mod. Bremmerman (a) (a) (a) (a) 515 300 160

Zilinskas (a) (a) (a) 8641 5129
Gomulka-Branin 5500 5020 4860

To6rn 3679 3606 3874 2584 3447 2499 1558
Gomulka—T6rn 6654 6084 6144

Gomulka—V.M. 7085 6684 7352 6766 11125 1495 1318

Price 3800 4900 4400 2400 7600 2500 1800

Fagiuoli 2514 2519 2518 513 2916 158 1600

De Biase-Frontini 620 788 1160 732 807 378 587

Mockus 1174 1279 1209 513 1232 362 189

Bélisle et al. (1990) (b) 339 302 4728 1846

Boender et al. (1982) 567 624 755 235 462 398 235
Snyman-Fatti (1987) 845 799 920 365 517 474 178
Kostrowicki-Piela (1991) (¢) (c) (¢) 200 200 120 120

Yao (1989) 1132 < 6000
Perttunen (1990) 516 371 250 264 82 97 54 197
Perttunen—

Stuckman (1990) 109 109 109 140 175 113 109 96 (a)
Jones et al. (1993) 155 145 145 199 571 191 195 285 2967
Storn—Price (1997) (d) 6400 6194 6251 476 7220 1018 1190 416 1371
MCS (e) 83" 129" 103* 79* 111" 81" 41* 42* 69*
MCS (f)(d) 582 633 595 131 113 94 51 37 566
MCS (g)(e) 196 196* 330 128 (c) 194" 57 44" 48"

a) Method converged to a local minimum.

¢) Global minimum not found with less than 12000 function calls.

(
(b) Average evaluations when converges. For H6, converged only 70 % of time.
(
(

d) Average over 25 cases. For H6, average over 24 cases only; one case did

not converge within 12000 function values.

(e) An asterisk indicates that the first local optimization gave the global

optimum.
(f) Perturbed box bounds
(g) Unconstrained problem.

mcs.tex; 22/07/1998; 10:49; p.20

Multilevel Coordinate Search 21

default values for the control parameters. The number of function eval-
uations needed for convergence was averaged over 25 runs for each test
function. In the case of Hartman6, one run did not converge after 12 000
function evaluations and we averaged only over the remaining 24 runs.
The last three lines give results for MCS, first over the same bound
constraints as in Jones et al. (1993), then averages over randomly per-
turbed box bounds, and finally for the unconstrained version. Details
will be given below.

7.2. TERMINATION

In the presentation of test results, methods are usually compared on
the basis of their performance on problems with known solutions. The
algorithm is terminated when a function value within some tolerance
of the global minimum has been found, and we also adopt this strat-
egy. However, in practical problems, one does not know the solution
in advance and needs a criterion that tells the program when to stop
searching for a better local minimizer. This criterion should be stringent
enough that it does not waste too many function values after the global
minimum has been found, but it should also be loose enough to ensure
that in typical cases, the algorithm does not terminate before the global
minimizer has been found.

Stochastic approaches to the design of suitable stopping criteria are
surveyed in Section 6 of Boender and Romeijn (1995). One of the
methods proposed there consists in stopping when the number m of
local searches done is larger than a function N(w) of the number w of
different local minima found so far. The function N(w) depends on the
assumptions, and several specific implicit definitions of N(w) are given
in Boender and Romeijn (1995). This result is theoretically justified for
the random multiple start method only but may serve as a guideline
also for other methods that use local searches.

However, with MCS we try to do very few local optimizations only,
and this reasoning appears inadequate. So far, we have not yet found
a useful general purpose stopping criterion for MCS. For the pur-
poses of the numerical tests reported here, the stopping criterion for
MCS was taken as obtaining a relative error < 0.01 % in the optimal
objective function value (which happens to be nonzero always), i.e.,
(f = faob)/| faron| < 104, which was also the criterion used by Jones
et al. (1993), Perttunen (1990), and Perttunen and Stuckman (1990).
Since the DE algorithm of Storn and Price (1997) operates only at
the global level, it takes a rather long time to find a minimum with
high accuracy and therefore we used obtaining a relative error < 1%
as stopping criterion. For the algorithms quoted in Jones et al. (1993),

mcs.tex; 22/07/1998; 10:49; p.21

22 Waltraud Huyer and Arnold Neumaier

results based on the definition of convergence used by their authors are
reported.

7.3. MCS CONTROL PARAMETER SETTINGS

We applied a MATLAB version of MCS with spax = 5n + 10, where
n is the dimension of the problem, and smaxls = 15 to the test
functions and used a simple initialization list consisting of midpoint
and boundary points, i.e.,

:1:11 = Uj, %2 = (u;i +v;)/2, 1‘? =vi, lLi=2

The limit on visits to Step 3 per local search was set to 50, and the
parameter -y in the stopping criterion for local optimization was taken
as v = 107! (cf. Subsection 5.3). Note that all examples have been run
with identical parameter settings, so that no tuning to the individual
test problems was involved. For running MCS without local search, we
would have to take a larger smax (i.e., a larger number of levels) to
reach the global minimum with the desired accuracy since then all of
the local search has to be done by MCS.

7.4. MODIFIED BOUNDS

We also investigated the stability of our results for MCS with respect
to random perturbations of the box bounds. Instead of the default box
bounds [u, v] given in Table I, we employed the box bounds [v/, v'] given
by

u = u; +0.5n(v; —w;), v, =v; +05n(v; —w;), i=1,...,n,

where 7 is a random variable that is uniformly distributed in the inter-
val [—0.5,0.5], but a value of n was only accepted in a given problem
if at least one of the global minimizers was in [u/, v']. The results given
in the second last line of Table II were taken as an average over 25
runs with different perturbed box bounds for each test function. For
Hartman6, we obtained one outlier for which the algorithm had not
found the global minimum after 12000 function calls, and we report a
result averaged over the 24 remaining runs.

Moreover, we applied MCS to the unconstrained optimization prob-
lem for the Dixon and Szegd (1978) test set and added the results to
Table II. In this case, we cannot use an initialization list consisting of
midpoint and boundary points any more. We used an initialization list
consisting of ZL'Zl = —10, xf = 0 and a:f’ = 10 and again took I; = 2 for
1=1,...,n.

mcs.tex; 22/07/1998; 10:49; p.22

Multilevel Coordinate Search 23

7.5. DISCUSSION

The results show that MCS seems to be strongly competitive with
existing algorithms in the case of problems with reasonable finite bound
constraints. MCS with unperturbed box bounds wins in 8 of 9 test
cases against every competing algorithm and is only beaten once by
Perttunen—Stuckman for the remaining test function. MCS with per-
turbed box bounds still wins against all competing algorithms for four
test functions. Only the results for Shekel’s functions and Shubert’s
function seem to depend heavily on the choice of the box bounds, but
they are comparable with the results of some other algorithms. DIRECT
is also sensitive to perturbation of the box bounds (Jones, personal
communication).

For unconstrained problems of dimension n > 4, the performance
of MCS is less satisfactory. The reason is that in the exploration of
an unbounded domain, it is easy to miss the region where the global
minimum lies if one has already found a low-lying nonglobal minimizer.
It seems that the MCS algorithm works reasonably well when the global
minimizer can be localized reasonably well by the bound constraints,
but not if the region containing the global minimizer is elusive.

In our MATLAB version of MCS, the non-vectorizable loops lead to a
significant overhead per function value. As the algorithm proceeds, the
number of function values per sweep decreases, but the time spent per
sweep does not become much shorter. This is due to the fact that, at
later stages, the case that a box is processed without being split occurs
more frequently. Since loops and conditional statements are executed in
C much faster than in MATLAB, a C implementation of the algorithm
would drastically reduce the overhead.

7.6. FURTHER TEST PROBLEMS

The Dixon and Szeg6 (1978) test set has been criticized for containing
mainly easy test problems. A more challenging test set was used in the
first contest on evolutionary optimization (ICEO) at the ICEC’96 con-
ference; cf. Storn and Price (1996). This test bed contains five problems,
each in a 5-dimensional and a 10-dimensional version, and on these test
functions, MCS showed some limitations. The names and default box
bounds of the ICEO test functions are given in Table III, and the results
are shown in Table IV. The first two lines in Table IV are results, taken
from Storn and Price (1996), of two different versions of DE.

We applied MCS with three different choices of the initialization
list to the ICEQO test functions. MCS1 is the standard version with
midpoints and boundary points. For MCS2, we took ZL'Zl = %ui + %Ui,

mcs.tex; 22/07/1998; 10:49; p.23

24 Waltraud Huyer and Arnold Neumaier

Table III. ICEO test functions and their box bounds.

Problem Name Box bounds
1 Sphere model [—5,5]"
2 Griewank’s function [—600, 600]™
3 Shekel’s foxholes [0, 10]™
4 Michalewicz’s function [0, 7"
5 Langerman’s function [0,10]™
77 = %(uz +), 23 = %ui + %vi, l; =2,i=1,...,n, ie., the points are

uniformly spaced but do not include the boundary points.

For MCS3, we generated an initialization list with the aid of line
searches. Starting with the absolutely smallest point in [u, v]|, we made
line searches with gls with smaxls = 25 and nloc = 5 along each
coordinate, where the best point was taken as starting point for the next
line search. The parameter nloc in gls determines how local or global
the line search is since the algorithm tries to find up to nloc minima
within smaxls function values. For the line searches in the local search
method described in Section 5, nloc = 1 was taken (entirely local line
search). For each coordinate i, all local minimizers found by the line
searches were put into the initialization list, and if their number was
less than three, they were supplemented with the values obtained from
gls closest to u; and v;.

Moreover, since some of the ICEO functions are considered to be
hard problems, we also applied MCS with a larger number of levels,
namely Smax = 10n. Again we used the three different initialization
lists defined above and added the results to Table IV as MCS4, MCS5
and MCS6, respectively.

For the ICEO functions, the uniformly spaced initialization list not
containing any boundary points turned out to be most successful since
these functions do not have any global minimizers at the boundary.
Building an initialization list with the aid of line searches did not
pay except for the easy ICEO1 function, where the minimizer was
already found by the line searches, and the separable ICEO4 function.
Moreover, taking a larger spyax yielded an improvement only for ICEO2.

Finally, we applied MCS to the testbed #1 used by Storn and Price
(1997). The names and box bounds are shown in Table V, and their
definition can be found in Storn and Price (1997). Problem 7 is a shifted
version of ICEO2 for n = 10. Problems 8 and 9 have general constraints
and were therefore not used here.

mcs.tex; 22/07/1998; 10:49; p.24

Multilevel Coordinate Search 25

Table IV. Number of function values for the ICEO functions.

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5
5D 10D 5D 10D 5D 10D 5D 10D 5D 10D

DE1 736 1892 5765 13508 76210 ! 1877 10083 5308 44733
DE2 463 1187 5157 16228 67380 -2 2551 18158 4814 -3

MCS1 61 142 - - 30050 - - - -
MCS2 62 142 1682 20904 1057 83713 25105 — -
MCS3 26 51 - - 32901 - 1912 - -

MCS4 68 162 1271 15661 43377 - - -
MCS5 68 162 1463 96903 1484 - 38826 —
MCS6 26 51 — 46168 48424 1851

1 7449250; 2 203350; 3 174006 function values.
A dash indicates that a global minimizer was not found after 100 000 function

calls.

Table V. Testbed #1 of Storn and Price (1997), dimensions and box bounds.

Problem Name Dimension n Box bounds
1 Sphere 3 [-5.12,5.12]"
2 Rosenbrock 2 [—2.048,2.048]"
3 Step 5 [-5.12,5.12]"
4 Quartic with random noise 30 [—1.28,1.28]"
5 Shekel’s foxholes 2 [—65.536,65.536]™
6 Corana’s parabola 4 [—1000, 1000]™
7 Griewank’s function 10 [—400, 400]™
8 Zimmerman’s problem 2 constraints
9 Polynomial fit 9, 17 constraints

The first three lines of Table VI are taken from Storn and Price
(1997). ANM denotes the annealed Nelder & Mead strategy of Press
et al. (1992) and ASA the Adaptive Simulated Annealing method by

Ingber (1989; 1996).

For MCS, we used an initialization list consisting of midpoint and
boundary points. However, for the functions where a known global
optimizer happens to be among the points in the initialization list,

a different initialization list with L; = 3, ¢ = 1,...

,n, was chosen.

mcs.tex; 22/07/1998; 10:49; p.25

26 Waltraud Huyer and Arnold Neumaier

Table VI. Number of function values for the Storn and Price
functions.

1 2 3! 42 5 6 7

ANM 95 106 90258 - - - -
ASA 397 11275 354 4812 1379 3581 -
DE 406 654 849 859 695 841 12752

MCS 10 111 45 673 3210 45 -

! discontinuous test function; ? noisy test function.
A dash indicates that a global minimizer was not found
after 100 000 function calls.

Problem 4 contains a random variable, and the result presented for
MCS was averaged over 25 runs, where convergence was defined as
reaching a point with function value < 15. Problem 1 has a quadratic
objective function, hence is easy for MCS, and Problem 3 is easy for
MCS since the objective function is monotonous.

8. Conclusions

The multilevel coordinate search algorithm MCS, presented in this
paper, has excellent theoretical convergence properties if the function
is continuous in the neighborhood of a global minimizer. In the current
implementation, our test results show that MCS is strongly competitive
with existing algorithms in the case of problems with reasonable finite
bound constraints. In our comparison, MCS outperforms the competing
algorithms almost always on the classical test problems set of Dixon
and Szegd (1978) with bound constraints.

For unconstrained problems of dimension n > 4, the performance
of MCS is less satisfactory, since in the exploration of an unbounded
domain, it is easy to miss the region where the global minimum lies
if one has already found a low-lying nonglobal minimizer. The same
problem appears for some hard test problems with a huge number of
local minima. However, whenever the global minimizer is found in these
cases, the number of function evaluations is usually much smaller than
for competing algorithms.

mcs.tex; 22/07/1998; 10:49; p.26

Multilevel Coordinate Search 27

Acknowledgements

The authors gratefully acknowledge partial support of this research by
the Austrian Fonds zur Forderung der wissenschaftlichen Forschung
(FWF) under grant P11516-MAT.

References

Bélisle, C. J. P., Romeijn, H. E. and Smith, R. L. (1990), Hide-and-Seek: a Sim-
ulated Annealing Algorithm for Global Optimization, Technical Report 90-25,
Department of Industrial and Operations Engineering, University of Michigan.

Boender, C. G. E., Rinnoy Kan, A. H. G., Stougie, L. and Timmer, G. T. (1982),
A Stochastic Method for Global Optimization, Mathematical Programming 22,
125-140.

Boender, C. G. E. and Romeijn, H. E. (1995), Stochastic Methods, in Horst, R. and
Pardalos, P. M. (eds.), Handbook of Global Optimization, Kluwer, Dordrecht,
829-869.

Brent, R. P. (1973), Algorithms for Minimization without Derivatives, Prentice-Hall,
Englewood Cliffs, N. J.

Csendes, T. and Ratz, D. (1997), Subdivision Direction Selection in Interval Methods
for Global Optimization, SIAM J. on Numerical Analysis 34, 922-938.

Dixon, L. C. W. and Szego, G. P. (1978), The Global Optimization Problem:
an Introduction, in Dixon, L. C. W. and Szegé, G. P. (eds.), Towards Global
Optimisation 2, North-Holland, Amsterdam, 1-15.

Elster, C. and Neumaier, A. (1995), A Grid Algorithm for Bound Constrained
Optimization of Noisy Functions, IMA J. of Numerical Analysis 15, 585—608.
Goertzel, B. (1992), Global Optimization by Multilevel Search, J. of Optimization

Theory and Applications 75, 423-432.

Hansen, E. R. (1992), Global Optimization Using Interval Analysis, Dekker, New
York.

Horst, R. and Tuy, H. (1996), Global Optimization. Deterministic Approaches, 3rd
ed., Springer, Berlin.

Ingber, L. (1989), Very Fast Simulated Re-Annealing, Mathematical and Computer
Modelling 12, 967-973.

Ingber, L. (1996), Adaptive Simulated Annealing (ASA): Lessons Learned, Control
and Cybernetics 25, 33—-54.

Jones, D. R., Perttunen, C. D. and Stuckman, B. E. (1993), Lipschitzian Optimiza-
tion without the Lipschitz Constant, J. of Optimization Theory and Applications
79, 157-181.

Kostrowicki, J. and Piela, L. (1991), Diffusion Equation Method of Global Mini-
mization: Performance on Standard Test Functions, J. of Optimization Theory
and Applications 69, 269-284.

Michalewicz, Z. (1996), Genetic Algorithms + Data Structures = Ewvolution Pro-
grams, 3rd ed., Springer, Berlin.

Migdalas, A., Pardalos, P. M. and Varbrand, P. (1998), Multilevel Optimization:
Algorithms and Applications, Kluwer, Dordrecht.

Nemhauser, G. L. and Wolsey, L. A. (1988), Integer and Combinatorial Optimization,
Wiley, New York.

mcs.tex; 22/07/1998; 10:49; p.27

28 Waltraud Huyer and Arnold Neumaier

Perttunen, C. D. (1990), Global Optimization Using Nonparametric Statistics, PhD
Thesis, University of Louisville.

Perttunen, C. D. and Stuckman, B. E. (1990), The Rank Transformation Applied
to a Multiunivariate Method of Global Optimization, IEEE Transactions on
Systems, Man, and Cybernetics 20, 1216-1220

Pintér, J. D. (1996), Global Optimization in Action, Kluwer, Dordrecht.

Pintér, J. D. (1996), Continuous Global Optimization Software: a Brief Review,
Optima 52, 1-8.

Powell, M. J. D. (1964), An Efficient Method for Finding the Minimum of a Function
of Several Variables without Calculating Derivatives, Computer J. 7, 155-162.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1992),
Numerical Recipes in C, 2nd ed., Cambridge University Press, Cambridge.

Ratz, D. and Csendes, T. (1995), On the Selection of Subdivision Directions
in Interval Branch-and-Bound Methods for Global Optimization, J. of Global
Optimization 7, 183-207.

Snyman, J. A. and Fatti, L. P. (1987), A Multi-Start Global Minimization Algorithm
with Dynamic Search Trajectories, J. of Optimization Theory and Applications
54, 121-141.

Storn, R. and Price, K. (1996), Minimizing the Real Functions of the ICEC’96
Contest by Differential Evolution, in Proceedings of the 1996 IEEE Conference
on Evolutionary Computation, IEEE Press, N.J., 842-844.

Storn, R. and Price, K. (1997), Differential Evolution — a Simple and Efficient Heuris-
tic for Global Optimization over Continuous Spaces, J. of Global Optimization
11, 341-359.

Vavasis, S. A. (1995), Complexity Issues in Global Optimization: a Survey, in
Horst, R. and Pardalos, P. M. (eds.), Handbook of Global Optimization, Kluwer,
Dordrecht, 27-41.

Vicente, L. N. and Calamai, P. H. (1994), Bilevel and Multilevel Programming: a
Bibliography Review, J. of Global Optimization 5, 291-306.

Yao, Y. (1989), Dynamic Tunneling Algorithm for Global Optimization, IEEFE
Transactions on Systems, Man, and Cybernetics 19, 1222-1230.

mcs.tex; 22/07/1998; 10:49; p.28

