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1 Introduction

In the recent years, first order methods for convex optimization have become prominent again
as they are able to solve large-scale problems in millions of variables (often arising from
applications to image processing, compressed sensing, or machine learning), where matrix-
based interior point methods cannot even perform a single iteration. (However, a matrix-free
interior point method by Fountoulakis et al. [15] works well in some large compressed
sensing problems.)

In 1983, Nemirovsky & Yudin [23] proved lower bounds on the complexity of first order
methods (measured in the number of subgradient calls needed to achieve a given accuracy) for
convex optimization under various regularity assumptions for the objective functions. (See
Nesterov [25, Sections 2.1.2 and 3.2.1] for a simplified account.) They constructed convex,
piecewise linear functions in dimensions n > k, where no first order method can have function

values more accurate than O(k−1/2) after k subgradient evaluations. This implies the need

for at least Ω(ε−2) subgradient evaluations in the worst case if f is a nondifferentiable but
Lipschitz continuous convex function. They also constructed convex quadratic functions in
dimensions n ≥ 2k where no first order method can have function values more accurate than
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O(k−2) after k gradient evaluations. This implies the need for at least Ω(ε−1/2) gradient eval-
uations in the worst case if f is an arbitrarily often differentiable convex function. However
in case of strongly convex functions with Lipschitz continuous gradients, the known lower
bounds on the complexity allow a dimension-independent linear rate of convergence Ω(qk)

with 0 < q = 1 −
√

σ/L, where σ is a strong convexity constant of f and L a Lipschitz
constant of its gradient.

Algorithms by Nesterov [25, 26, 29] (dating back in the unconstrained, not strongly convex
case to 1983 [24]), achieve the optimal complexity order in all three cases. These algorithms
need as input the knowledge of global constants – a global Lipschitz constant for the objective
functions in the nonsmooth case, a global Lipschitz constant for the gradient in the smooth
case, and an explicit constant of strong convexity in the strongly convex case. Later many
variants were described (see, e.g., Auslender & Teboulle [7], Lan et al. [21]), some of
which are adaptive in the sense that they estimate all required constants during the execution
of the algorithm. Beck & Teboulle [11] developed an adaptive proximal point algorithm
called FISTA, popular in image restauration applications. Like all proximal point based
methods, the algorithm needs more information about the objective function than just sub-
gradients, but delivers in return a higher speed of convergence. Tseng [33] gives a common
uniform derivation of several variants of fast first order algorithms based on proximal points.
Becker et al. [12] add (among other things) adaptive features to Tseng’s class of algo-
rithms, making them virtually independent of global (and hence often pessimistic) Lipschitz
information. Other such adaptive algorithms include Gonzaga et al. [16, 17] and Meng &

Chen [22]. Devolder et al. [14] show that both the nonsmooth case and the smooth case
can be understood in a common way in terms of inexact gradient methods. Recent work by
Nesterov [31] discusses methods where the amount of smoothness is measured in terms of
Hölder conditions, interpolating between the assumptions of Lipschitz continuity and that
of Lipschitz continuity of the gradient, and where no knowledge of the relevant constants is
needed. It is likely that similar results as in these papers can be proved for OSGA.

If the Lipschitz constant is very large, the methods with optimal complexity for the smooth
case are initially much slower than the methods that have an optimal complexity for the
nonsmooth case. This counterintuitive situation was remedied by Lan [20], who provides
an algorithm that needs (expensive auxiliary computations but) no knowledge about the
function except convexity and has the optimal complexity, both in the nonsmooth case and
in the smooth case, without having to know whether or not the function is smooth. However,
its worst case behavior on strongly convex problem is unknown. Similarly, if the constant of
strong convexity is very tiny, the methods with optimal complexity for the strongly convex
case are initially much slower than the methods that do not rely on strong convexity. Prior
to the present work, no algorithm was known with optimal complexity both for the general
nonsmooth case and for the strongly convex case.

Content. In this paper, we derive an algorithm for approximating a solution x̂ ∈ C of the
convex optimization problem

f(x̂) = f̂ := min
x∈C

f(x) (1)

using first order information (function values f and subgradients g) only. Here f : C → R is
a proper and closed convex function defined on a nonempty, closed and convex subset C of a
finite-dimensional real vector space V with bilinear pairing 〈h, z〉 defined for z ∈ V and h in
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the dual space V ∗. The minimum in (1) exists if there is a point x0 ∈ C such that the level
set {x ∈ C | f(x) ≤ f(x0)} is bounded.

Our method is based on monotonically reducing bounds on the error f(xb)− f̂ of the function
value of the currently best point xb. These bounds are derived from suitable linear relaxations
and inequalities obtained with the help of a prox function. The solvability of an auxiliary
optimization subproblem involving the prox function is assumed. In many cases, this auxiliary
subproblem has a cheap, closed form solution; this is shown here for the unconstrained case
with a quadratic prox function, and in Ahookhosh & Neumaier [4, 5, 6] for more general
cases involving simple and practically important convex sets C.

The OSGA algorithm presented here provides a fully adaptive alternative to current optimal
first order methods. If no strong convexity is assumed, it shares the uniformity, the lack
of need to estimate Lipschitz constants, and the optimal complexity properties of Lan’s
method, but has a far simpler structure and derivation. Beyond that, it also gives the
optimal complexity in the strongly convex case, though it needs in this case – like all other
known methods with provable optimal linear convergence rate – the knowledge of an explicit
constant of strong convexity. Furthermore – like Nesterov’s O(k−2) algorithm from [26] for
the smooth case, but unlike his linearly convergent algorithm for the strongly convex case,
scheme (2.2.19) in Nesterov [25], the algorithm derived here does not evaluate f and g
outside their domain. The method for analyzing the complexity of OSGA is also new; neither
Tseng’s complexity analysis nor Nesterov’s estimating sequences are applicable to OSGA.

The OSGA algorithm can be used in place of Nesterov’s optimal algorithms for smooth
convex optimization and its variants whenever the latter are traditionally employed. Thus it
may be used as the smooth solver with methods for solving nonsmooth convex problems via
smoothing (Nesterov [26]), and for solving very large linear programs (see, e.g., Aybat &

Iyengar [9], Chen & Burer [13], Gu et al. [18], Nesterov [27, 28], Richtarik [32])

Related results. For unconstrained problems (C = V ), Ahookhosh [1] gives extensive
numerical experiments and comparisons of OSGA with popular first-order methods (e.g.,
FISTA and several of Nesterov’s methods) for applications to inverse problems involving
multi-term composite functions but no constraints. Remarkably, the performance is often
close to that expected for smooth problems even when the problem is nonsmooth, whereas
the other methods often perform close to the worst case. Therefore, OSGA is significantly
better in speed and accuracy than earlier methods designed for nonsmooth problems.

In many case where proximal point procedures need to resort to approximations, subgradients
can be calculated exactly, making OSGA more easily applicable. For example, this is the
case in total variation imaging problems, where the results of [1] show that OSGA is superior
to FISTA and related algorithms although the latter have a stronger complexity guarantee.

The only method comparable in quality is the 1983 method of Nesterov [24] designed for
smooth problems but “misused” for nonsmooth problems by pretending that the subgradient
is a gradient. However, there is currently no convergence proof for Nesterov’s 1983 smooth
method when used in this way.

Ahookhosh & Neumaier [2, 3] solve unconstrained convex problems involving costly linear
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operators by combing OSGA and a multi-dimesional subspase search technique. Ahookhosh

& Neumaier [4, 5, 6] discuss OSGA for various classes of constrained problems. [4] proves
that a class of structured nonsmooth convex constrained problems generalizing the problem
class considered by Nesterov [30, 31], may be rewritten as smooth problems with simple

constraints solvable with OSGA with a complexity of order O(ε−1/2). [5] shows that the
auxiliary subproblem can be solved for bound-constrained problems. [6] shows that for many
other types of constraints appearing in applications, the auxiliary subproblem can be solved
efficiently, either in a closed form or by a simple iterative scheme.

Future work. The new approach opens a number of lines for further research. I’d like to
mention in particular two extensions.

Many first order algorithms for convex optimization remain well-behaved even when auxiliary
(e.g., proximal point) computations are only done approximately. It should be possible
to show for OSGA that the approximate solution of the subproblem and the approximate
calculation of subgradients calculations does not significantly affect the quality of the iteration
before the function values match the optimum within a reasonable accuracy.

It would be very interesting to extend the technique to problems involving convex functional
constraints. That this might be possible is suggested by the existence of algorithms such as
the CoMirror method (Beck et al. [10]) that handle convex problems with simple constraints
and a single convex functional constraint g(x) ≤ 0 (where g(x) may be taken as the maximum
of several convex functions to cover multiple functional constraints).

Acknowledgment. I’d like to thank Masoud Ahookhosh for numerous useful remarks on
earlier versions of the manuscript. Thanks also to the referees for a number of suggestions
that improved the paper.

2 Bounds from prox functions

In this section we motivate the new algorithm by proving that the solution of a simple
auxiliary problem leads to a bound on the difference between a function value and the optimal
function value. We then show how to solve the auxiliary problem in the unconstrained case.

In the following, V denotes a finite-dimensional Banach space with norm ‖ · ‖, and V ∗ is the
dual Banach space with the dual norm ‖ · ‖∗. C is a nonempty, closed and convex subset of
V . The objective function f : C → R is assumed to be proper, closed and convex, and g(x)
denotes a particular computable subgradient of f at x ∈ C.

2.1 The basic idea

The method is based on monotonically reducing bounds on the error f(xb)− f̂ of the function
value of the currently best point xb. These bounds are derived from suitable linear relaxations

f(z) ≥ γ + 〈h, z〉 for all z ∈ C (2)
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(where γ ∈ R and h ∈ V ∗) with the help of a continuously differentiable prox function

Q : C → R satisfying
Q0 := inf

z∈C
Q(z) > 0, (3)

Q(z) ≥ Q(x) + 〈gQ(x), z − x〉+ 1

2
‖z − x‖2 for all x, z ∈ C, (4)

where gQ(x) denotes the gradient of Q at x ∈ C. (Thus Q is strongly convex with strong
convexity parameter σ = 1. Choosing σ = 1 simplified the formulas, and is no restriction of
generality, as we may always rescale a prox function to enforce σ = 1.) We require that

E(γ, h) := − inf
z∈C

γ + 〈h, z〉
Q(z)

= sup
z∈C

Eγ,h(z), (5)

, where Eγ,h(z) = −γ+〈h,z〉
Q(z)

, is attained for each γ ∈ R and h ∈ V ∗ at some z = U(γ, h) ∈ C.

2.1 Proposition. Let

γb := γ − f(xb), u := U(γb, h), η := E(γb, h). (6)

Then
0 ≤ f(xb)− f̂ ≤ ηQ(x̂). (7)

In particular, if xb is not yet optimal then the choice (6) implies E(γb, h) > 0.

Proof. Our requirements imply that, for arbitrary γb ∈ R and h ∈ V ∗,

γb + 〈h, z〉 ≥ −E(γb, h)Q(z) for all z ∈ C.

Now (7) follows from (2) for z = x̂ together with (3). If xb is not optimal then the left
inequality in (7) is strict, and since Q(z) ≥ Q0 > 0, we conclude that 0 < η = E(γb, h). ⊓⊔

Note that the form of the auxiliary optimization problem (5) is forced by this argument.
Although this is a nonconvex optimization problem, it is shown inAhookhosh & Neumaier

[4, 5, 6] that there are many important cases where for appropriate prox functions, η = E(γ, h)
and u = U(γ, h) are cheap to compute. In particular, we shall show in Subsection 2.3 that
this is the case when C = V and the prox function is quadratic. Typically, u and η in (6)
are computed together.

If an upper bound for Q(x̂) is known or assumed, the bound (7) translates into a computable
error estimate for the minimal function value. But even in the absence of such an upper
bound, we can solve the optimization problem (1) to a target accuracy

0 ≤ f(xb)− f̂ ≤ εQ(x̂) (8)

if we manage to decrease the error factor η from its initial value until η ≤ ε for some target
tolerance ε > 0. This will be achieved by Algorithm 3.4 defined below. We shall prove for
this algorithm complexity bounds on the number of iterations that are independent of the
dimension of V (which may be infinite), and – apart from a constant factor – best possible
under a variety of assumptions on the objective function.
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2.2 Optimality conditions for the auxiliary optimization problem

The optimality conditions for the optimization problem (5) associated play an important role
both for the construction of methods for solving (5) and for the derivation of bounds for the
error factor η.

2.2 Proposition. Let η = E(γ, h) > 0 and u = U(γ, h). Then

γ + 〈h, u〉 = −ηQ(u), (9)

〈ηgQ(u) + h, z − u〉 ≥ 0 for all z ∈ C, (10)

γ + 〈h, z〉 ≥ η
(1
2
‖z − u‖2 −Q(z)

)
for all z ∈ C. (11)

Proof. The definition (5) implies that the function φ : C → R defined by

φ(z) := γ + 〈h, z〉+ ηQ(z)

is nonnegative and vanishes for z = u := U(γ, h). In particular, (9) holds. Since φ(z)
is continuously differentiable with gradient gφ(z) = h + ηgQ(z), the first order optimality
condition

〈gφ(u), z − u〉 ≥ 0 for all z ∈ C (12)

holds, and (10) follows. Since η > 0 and Q(z) is strongly convex with parameter 1, φ(z) is
strongly convex with parameter η. Therefore

φ(z)− φ(u)− 〈gφ(u), z − u〉 ≥ η

2
‖z − u‖2,

and (11) follows from (12). ⊓⊔

2.3 Unconstrained problems with quadratic prox function

To use the algorithm in practice, we need prox functions for which E(γ, h) and U(γ, h) can
be evaluated easily. A number of simple domains C and prox functions for which this is
possible (based on Proposition 2.2) are discussed in Ahookhosh & Neumaier [4, 5, 6].

Here we only discuss the simplest case, where the original optimization problem is uncon-
strained (so that C = V ) and the norm on V is Euclidean,

‖z‖ :=
√

〈Bz, z〉,

where the preconditioner B is a symmetric and positive definite linear mapping B : V →
V ∗. The associated dual norm on V ∗ is then given by

‖h‖∗ := ‖B−1h‖ =
√
〈h,B−1h〉.
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Given the preconditioner, it is natural to consider the quadratic prox function

Q(z) := Q0 +
1

2
‖z − z0‖2, (13)

where Q0 is a positive number and z0 ∈ V . As the quotient of a linear and a positive quadratic
function, Eγ,h(z) is arbitrarily small outside a ball of sufficiently large radius. Therefore the
level sets for positive function values are compact, and the supremum is attained on any of
these sets set.

By Proposition 2.1, we may assume that η := E(γ, h) > 0. Since C = V and gQ(z) =
B(z−z0), we conclude from the proposition that E(γ, h)B(u−z0)+h = 0, where u = U(γ, h),
so that

U(γ, h) = z0 − η−1B−1h. (14)

Inserting this into (9), we find

η
(
Q0 +

1

2
‖ − η−1B−1h‖2

)
= ηQ(u) = −γ − 〈h, z0 − η−1B−1h〉,

which simplifies to the quadratic equation

Q0η
2 + βη − 1

2
‖h‖2∗ = 0, β = γ + 〈h, z0〉.

Since the left hand side is negative at η = 0, there is exactly one positive solution, which
therefore is the unique maximizer. It is given by

E(γ, h) =
−β +

√
β2 + 2Q0‖h‖2∗
2Q0

=
‖h‖2∗

β +
√

β2 + 2Q0‖h‖2∗
. (15)

(The first form is numerically stable when β ≤ 0, the second when β > 0.)

A reasonable choice is to take for z0 the starting point of the iteration, and to use an order
of magnitude guess Q0 ≈ 1

2
‖x̂− z0‖2.

3 The OSGA algorithm

In this section we derive all details needed to formulate the new algorithm.

Constructing linear relaxations. The convexity of f implies for x, z ∈ C the bound

f(z) ≥ f(x) + 〈g(x), z − x〉, (16)

where g(x) denotes a subgradient of f at x ∈ C. Therefore (2) always holds with

γ = f(xb)− 〈g(xb), xb〉, h = g(xb).
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We can find more general relaxations of the form (2) by accumulating past information.
Indeed, if (2) holds, α ∈ [0, 1], and x ∈ C then (2) remains valid when we substitute

γ := γ + α(f(x)− 〈g(x), x〉 − γ),

h := h+ α(g(x)− h)

in place of γ, h, as by (16),

f(z) = (1− α)f(z) + αf(z)

≥ (1− α)(γ + 〈h, z〉) + α(f(x) + 〈g(x), z − x〉)
= (1− α)γ + α(f(x)− 〈g(x), x〉) + 〈(1− α)h+ αg(x), z〉
= γ + 〈h, z〉.

For appropriate choices of x and α, this may give much improved error bounds. We discuss
suitable choices for x later.

Step size selection. The step size parameter α controls the fraction of the new infor-
mation (16) incorporated into the new relaxation. It is chosen with the hope for a reduction
factor of approximately 1 − α in the current error factor η, and must therefore be adapted
to the actual progress made.

First we note that in practice, Q(x̂) is unknown; hence the numerical value of η is meaningless
in itself. However, quotients of η at different iterations have a meaning, quantifying the
amount of progress made.

In the following, we use bars to denote quantities tentatively modified in the current iteration,
but they replace the current values of these quantities only if an acceptance criterion is met
that we now motivate. We measure progress in terms of the quantity

R :=
η − η

λαη
, (17)

where λ ∈ ]0, 1[ is a fixed number. A value R ≥ 1 indicates that we made sufficient progress
in that

η = (1− λRα)η (18)

was reduced at least by a fraction λ of the designed improvement of η by αη; thus the step
size is acceptable or may even be increased if R > 1. On the other hand, if R < 1, the
step size must be reduced significantly to improve the chance of reaching the design goal.
Introducing a maximal step size αmax ∈ ]0, 1[ and two parameters with 0 < κ′ ≤ κ to control
the amount of increase or decrease in α, we update the step size according to

α :=

{
αe−κ if R < 1,
min(αeκ

′(R−1), αmax) if R ≥ 1.
(19)

Updating the linear relaxation and u makes sense only when η was improved. This suggests
the following update scheme, in which α is always modified, while h, γ, η, and u are changed
only when η < η; if this is not the case, the barred quantities are simply discarded.
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3.1 Algorithm. (Update scheme)
global tuning parameters: λ ∈ ]0, 1[; αmax ∈ ]0, 1[; κ > 0;
κ′ ∈ ]0, κ];

input: α, η, h, γ, η, u;
output: α, h, γ, η, u;
R = (η − η)/(λαη);
if R < 1, α = αe−κ;

else α = min(αeκ
′(R−1), αmax);

end;
α = α;
if η < η,

h = h; γ = γ; η = η; u = u;
end;

Parameters that work well in practice [1] are λ = 0.9, κ = κ′ = 0.5, αmax = 0.7.

If αmin denotes the smallest actually occurring step size (which is not known in advance),
we have global linear convergence with a convergence factor of 1 − e−καmin. However, αmin

and hence this global rate of convergence may depend on the target tolerance ε; thus the
convergence speed in the limit ε → 0 may be linear or sublinear depending on the properties
of the specific function minimized.

Strongly convex relaxations. If f is strongly convex, we may know a number µ > 0 such
that f − µQ is still convex. In this case, we have in place of (16) the stronger inequality

f(z)− µQ(z) ≥ f(x)− µQ(x) + 〈g(x)− µgQ(x), z − x〉 for x, z ∈ C. (20)

In the following, we only assume that µ ≥ 0, thus covering the case of linear relaxations, too.

(20) allows us to construct strongly convex relaxations of the form

f(z) ≥ γ + 〈h, z〉+ µQ(z) for all z ∈ C. (21)

For example, (21) always holds with

h = g(xb)− µgQ(xb), γ = f(xb)− µQ(xb)− 〈h, xb〉.

Again more general relaxations of the form (21) are found by accumulating past information.

3.2 Proposition. Suppose that x ∈ C, α ∈ [0, 1], and let

h = h+ α(g − h), γ = γ + α
(
f(x)− µQ(x)− 〈g, x〉 − γ

)
,

where
g = g(x)− µgQ(x).

If (21) holds and f − µQ is convex then (21) also holds with γ and h in place of γ and h.
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Proof. By (20) and the assumptions,

f(z)− µQ(z) = (1− α)(f(z)− µQ(z)) + α(f(z)− µQ(z))

≥ (1− α)(γ + 〈h, z〉)
+α

(
f(x)− µQ(x) + 〈g(x), z − x〉 − µ〈gQ(x), z − x〉

)

= γ + 〈h, z〉.

⊓⊔

The relaxations (21) lead to the following error bound.

3.3 Proposition. Let
γb := γ − f(xb), η := E(γb, h)− µ.

Then (21) implies

0 ≤ f(xb)− f̂ ≤ ηQ(x̂). (22)

Proof. By definition of E(γb, h) = η + µ and (21), we have

−(η + µ)Q(z) ≤ γb + 〈h, z〉 = γ − f(xb) + 〈h, z〉 ≤ f(z)− f(xb)− µQ(z).

for all z ∈ C. Substituting z = x̂ gives (22). ⊓⊔

Note that for µ = 0, we simply recover the previous results for general convex functions.

An optimal subgradient algorithm. For a nonsmooth convex function, the subgradient
at a point does not always determine a direction of descent. However, we may hope to find
better points by moving from the best point xb into the direction of the point (6) used to
determine our error bound. We formulate on this basis the following algorithm, for which
optimal complexity bounds will be proved in Section 5.

Note that the strong convexity parameter µ needs to be specified to use the algorithm. If µ
is unknown, one may always put µ = 0 (ignoring possible strong convexity), at the cost of
possibly slower worst case asymptotic convergence. (Techniques like those used in Juditsky

& Nesterov [19] or Gonzaga & Karas [16] for choosing µ adaptively can probably be
applied to the above algorithm to remove the dependence on having to know µ. However,
[19] requires an explicit knowledge of a Lipschitz constant for the gradient, while [16] proves
only sublinear convergence. It is not yet clear how to modify OSGA to avoid both problems
simultaneously.)
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3.4 Algorithm. (Optimal subgradient algorithm, OSGA)
global tuning parameters: λ ∈ ]0, 1[; αmax ∈ ]0, 1[; κ > 0;
κ′ ∈ ]0, κ];
input parameters: µ ≥ 0; ε > 0; ftarget;
output: xb;
assumptions: f − µQ is convex;
begin

choose xb ∈ C; stop if f(xb) ≤ ftarget;
h = g(xb)− µgQ(xb); γ = f(xb)− µQ(xb)− 〈h, xb〉;
γb = γ − f(xb); u = U(γb, h); η = E(γb, h)− µ;
α = αmax;
while 1,

x = xb + α(u− xb); g = g(x)− µgQ(x);

h = h+ α(g − h); γ = γ + α(f(x)− µQ(x)− 〈g, x〉 − γ);
x′
b = argmin

z∈{xb,x}

f(z);

γ′
b = γ − f(x′

b); u′ = U(γ′
b, h); x

′ = xb + α(u′ − xb);
choose xb with f(xb) ≤ min(f(x′

b), f(x
′));

γb = γ − f(xb); u = U(γb, h); η = E(γb, h)− µ;
xb = xb;
stop if some user-defined test is passed;
update α, h, γ, η, u by Algorithm 3.1;

end;
end;

The analysis of the algorithm will be independent of the choice of xb allowed in Algorithm
3.4. The simplest choice is

xb = argmin
z∈{x′

b
,x′}

f(z).

If the best function value f(xb) is stored and updated, each iteration then requires the
computation of two function values f(x) and f(x′) and one subgradient g(x).

However, the algorithm allows the incorporation of heuristics to look for improved function
values before deciding on the choice of xb. This may involve additional function evaluations
at points selected by a line search procedure (see, e.g., Beck & Teboulle [11]), a bundle
optimization (see, e.g., Lan [20]), or a local quadratic approximation (see, e.g., Yu et al.
[34]).

For numerical results see the remarks at the end of the introduction.

4 Inequalities for the error factor

The possibility to get worst case complexity bounds rests on the establishment of a strong
upper bound on the error factor η. This bound depends on global information about the
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function f ; while not necessary for executing the algorithm itself, it is needed for the analy-
sis. Depending on the properties of f , global information of different strength can be used,
resulting in inequalities of corresponding strength. The key steps in the analysis rely on the
lower bound for the term γ + 〈h, z〉 derived in Proposition 2.2.

4.1 Theorem. In Algorithm 3.4, the error factors are related by

η − (1− α)η ≤ α2‖g(x)‖2∗
2(1− α)(η + µ)Q0

, (23)

where ‖ · ‖∗ denotes the norm dual to ‖ · ‖.

Proof. We first establish some inequalities needed for the later estimation. By convexity of

Q and the definition of h,

αµ
(
Q(u)−Q(x) + 〈gQ(x), x〉

)
≥ αµ〈gQ(x), u〉 = 〈h− h+ α(g(x)− h), u〉
= (1− α)〈h, u〉+ 〈αg(x)− h, u〉.

By definition of x, we have

(1− α)(xb − x) = −α(u− x).

Hence (20) (with µ = 0) implies

(1− α)(f(xb)− f(x)) ≥ (1− α)〈g(x), xb − x〉 = −α〈g(x), u− x〉.

By definition of γ, we conclude from these two inequalities that

γ − f(x) + αµQ(u) = (1− α)(γ − f(x))− α〈g(x), x〉+ αµ
(
Q(u)−Q(x) + 〈gQ(x), x〉

)

≥ (1− α)
(
γ − f(x) + 〈h, u〉

)
+ α〈g(x), u− x〉 − 〈h, u〉

≥ (1− α)
(
γ − f(xb) + 〈h, u〉

)
+ α〈g(x), u− u〉 − 〈h, u〉.

Using this, (9) (with γb = γ − f(xb) in place of γ and h in place of h), and E(γb, h) = η + µ
gives

(η + µ− αµ)Q(u) = f(xb)− γ − 〈h, u〉 − αµQ(u)

≤ f(xb)− f(x)− α〈g(x), u− u〉 − (1− α)
(
γ − f(xb) + 〈h, u〉

)
.

(24)
Since E(γb, h) > 0 by Proposition 2.1, we may use (11) with γb = γ− f(xb) in place of γ and
η + µ = E(γb, h), and find

(η + µ)Q(u) ≥ f(xb)− γ − 〈h, u〉+ η + µ

2
‖u− u‖2. (25)
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Now (24) and (25) imply

(η − (1− α)η)Q(u) = (η + µ− αµ)Q(u)− (1− α)(η + µ)Q(u)

≤ f(xb)− f(x)− (1− α)
(
γ − f(xb) + 〈h, u〉

)

−α〈g(x), u− u〉
−(1− α)

(
f(xb)− γ − 〈h, u〉+ η + µ

2
‖u− u‖2

)

= f(xb)− f(x) + S,

where

S := −α〈g(x), u− u〉 − (1− α)(η + µ)

2
‖u− u‖2

≤ α‖g(x)‖∗‖u− u‖ − (1− α)(η + µ)

2
‖u− u‖2

=
α2‖g(x)‖2∗ − (α‖g(x)‖∗ + (1− α)(η + µ)‖u− u‖)2

2(1− α)(η + µ)
≤ α2‖g(x)‖2∗

2(1− α)(η + µ)
.

(26)

If η ≤ (1− α)η then (23) holds trivially. Thus we assume that η > (1− α)η. Then

(η − (1− α)η)Q0 ≤ (η − (1− α)η)Q(u) ≤ f(xb)− f(x) + S. (27)

Since f(xb) ≤ f(x), we conclude again that (23) holds. Thus (23) holds generally. ⊓⊔

Note that the arguments used in this proof did not make use of x′; thus (23) even holds when
one sets x′ = x in the algorithm, saving some work.

4.2 Theorem. If f has Lipschitz continuous gradients with Lipschitz constant L then, in
Algorithm 3.4,

η > (1− α)η ⇒ (1− α)(η + µ) < α2L. (28)

Proof. The proof follows the general line of the preceding proof, but now we must consider
the information provided by x′.

Since E is monotone decreasing in its first argument and f(x′
b) ≥ f(xb), the hypothesis of

(28) implies that

η′ := E(γ − f(x′
b), h)− µ ≥ E(γ − f(xb), h)− µ = η > (1− α)η.

By convexity of Q and the definition of h,

αµ
(
Q(u′)−Q(x) + 〈gQ(x), x〉

)
≥ αµ〈gQ(x), u′〉 = 〈h− h+ α(g(x)− h), u′〉
= (1− α)〈h, u′〉+ 〈αg(x)− h, u′〉.

By definition of x, we have

(1− α)(xb − x) = −α(u− x).
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Hence (20) (with µ = 0) implies

(1− α)(f(xb)− f(x)) ≥ (1− α)〈g(x), xb − x〉 = −α〈g(x), u− x〉.

By definition of γ, we conclude from the last two inequalities that

γ − f(x) + αµQ(u′) = (1− α)(γ − f(x))− α〈g(x), x〉+ αµ
(
Q(u′)−Q(x) + 〈gQ(x), x〉

)

≥ (1− α)
(
γ − f(x) + 〈h, u′〉

)
+ α〈g(x), u′ − x〉 − 〈h, u′〉

≥ (1− α)
(
γ − f(xb) + 〈h, u′〉

)
+ α〈g(x), u′ − u〉 − 〈h, u′〉.

Using this, (9) (with γ′
b = γ − f(x′

b) in place of γ and h in place of h), and E(γ′
b, h) = η′ + µ

gives

(η′ + µ− αµ)Q(u′) = f(x′
b)− γ − 〈h, u′〉 − αµQ(u′)

≤ f(x′
b)− f(x)− α〈g(x), u′ − u〉

−(1− α)
(
γ − f(x′

b) + 〈h, u′〉
)
.

(29)

Using (11) (with γb = γ − f(xb) in place of γ) and η + µ = E(γb, h), we find

(η + µ)Q(u′) ≥ f(xb)− γ − 〈h, u′〉+ η + µ

2
‖u′ − u‖2. (30)

Now (29) and (30) imply

(η′ − (1− α)η)Q(u′) = (η′ + µ− αµ)Q(u′)− (1− α)(η + µ)Q(u′)

≤ f(x′
b)− f(x)− (1− α)

(
γ − f(xb) + 〈h, u′〉

)

−α〈g(x), u′ − u〉
−(1− α)

(
f(xb)− γ − 〈h, u′〉+ η + µ

2
‖u′ − u‖2

)

= f(x′
b)− f(x) + S ′,

where

S ′ := −α〈g(x), u′ − u〉 − (1− α)(η + µ)

2
‖u′ − u‖2,

giving
(η′ − (1− α)η)Q0 ≤ f(x′

b)− f(x) + S ′.

Now

f(x′
b) ≤ f(x′) ≤ f(x) + 〈g(x), x′ − x〉+ L

2
‖x′ − x‖2

= f(x) + α〈g(x), u′ − u〉+ α2L

2
‖u′ − u‖2,

(31)

so that under the hypothesis of (28)

0 < (η′ − (1− α)η)Q0 ≤
α2L− (1− α)(η + µ)

2
‖u′ − u‖2.

Thus α2L− (1− α)(η + µ) > 0, and the conclusion of (28) holds. ⊓⊔
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5 Bounds for the number of iterations

We now use the inequalities from Theorem 4.1 and Theorem 4.2 to derive bounds for the
number of iterations. The weakest global assumption, mere convexity, leads to the weakest
bounds and guarantees sublinear convergence only, while the strongest global assumption,
strong convexity and Lipschitz continuous gradients, leads to the strongest bounds guarantee-
ing R-linear convergence. Our main result shows that, asymptotically as ε → 0, the number
of iterations needed by the OSGA algorithm matches the lower bounds on the complexity
derived by Nemirovski & Yudin [23], apart from constant factors:

5.1 Theorem. Suppose that f − µQ is convex. Then:

(i) (Nonsmooth complexity bound)
If the points generated by Algorithm 3.4 stay in a bounded region of the interior of C, or if
f is Lipschitz continuous in C, the total number of iterations needed to reach a point with
f(x) ≤ f(x̂) + ε is at most O((ε2 + µε)−1). Thus the asymptotic worst case complexity is

O(ε−2) when µ = 0 and O(ε−1) when µ > 0.

(ii) (Smooth complexity bound)
If f has Lipschitz continuous gradients with Lipschitz constant L, the total number of itera-

tions needed by Algorithm 3.4 to reach a point with f(x) ≤ f(x̂) + ε is at most O(ε−1/2) if

µ = 0, and at most O(| log ε|
√
L/µ) if µ > 0.

In particular, if f is strongly convex and differentiable with Lipschitz continuous gradients,
µ > 0 holds with arbitrary quadratic prox functions, and we get a complexity bound similar
to that achieved by the preconditioned conjugate gradient method for linear systems; cf.
Axelsson & Lindskog [8].

Note that (28) generalizes to other situations by replacing (31) with a weaker smoothness
property of the form

f(z) ≤ f(x) + 〈g(x), z − x〉+ φ(‖z − x‖) (32)

with φ convex and monotone increasing. For example, this holds with φ(t) = L1t if f has

subgradients with bounded variation, and with φ(t) = Lst
s+1 if f has Hölder continuous

gradients with exponent s ∈ ]0, 1[ , and with linear combinations thereof in the composite
case considered by Lan [20]. Imitating the analysis below of the two cases stated in the
theorem then gives corresponding complexity bounds matching those obtained by Lan.

Theorem 5.1 follows from the two propositions below covering the different cases, giving
in each case explicit upper bounds on the number Kµ(α, η) of further iterations needed to
complete the algorithm from a point where the values of α and η given as arguments of Kµ

were achieved. We write α0 and η0 for the initial values of α and η. Only the dependence on
µ, α, and η is made explicit.

5.2 Proposition. Suppose that the dual norm of the subgradients g(x) encountered during
the iteration remains bounded by the constant c0. Define

c1 :=
c20
2Q0

, c2 := max
( eκc1
(1− λ)(1− αmax)

,
η0(η0 + µ)

α0

)
, c3 =

c2
2λ

.
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(i) In each iteration,
η(η + µ) ≤ αc2. (33)

(ii) The algorithm stops after at most

Kµ(α, η) := 1 + κ−1 log
c2α

ε(ε+ µ)
+

c3
ε(ε+ µ)

− c3
η(η + µ)

(34)

further iterations.

In particular, (i) and (ii) hold when the iterates stay in a bounded region of the interior of
C, or when f is Lipschitz continuous in C.

Note that any convex function is Lipschitz continuous in any closed and bounded domain
inside the interior of its support. Hence if the iterates stay in a bounded region R of the
interior of C, ‖g‖ is bounded by the Lipschitz constant of f in the closure of the region R.

Proof. (i) Condition (33) holds initially, and is preserved in each update unless α is reduced.
But then R < 1, hence η ≥ (1 − λα)η. Combining this with the upper bound on η from
Theorem 4.1 gives

(1− λ)αη ≤ η − (1− α)η ≤ α2c1
(1− α)(η + µ)

.

This implies
(1− λ)(1− α)η(η + µ) ≤ αc1.

Since λ < 1 and α ≤ eκα by (19), we conclude that

η(η + µ) ≤ η(η + µ) ≤ αc1
(1− λ)(1− α)

≤ αc2.

Thus (33) holds with η and α in place of η and α, and hence always.

(ii) As the algorithm stops once η ≤ ε, (33) implies that in each iteration c2α ≥ ε(ε + µ).
As α is reduced only when R < 1, and then by a fixed factor e−κ, this cannot happen more

than κ−1 log
c2α

ε(ε+ µ)
times in turn. Thus after some number of α-reductions we must always

have another step with R ≥ 1. By (18), this gives a reduction of η by a factor of at least
1 − λα. But this implies that the stopping criterion η ≤ ε is eventually reached. Therefore

the algorithm stops eventually. Since R ≥ 0, (19) implies α ≤ αeκ(R−1). Therefore

log(α/α) ≥ κ(1−R). (35)
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Now (35), (18), and (33) imply

Kµ(α, η)−Kµ(α, η) =
log(α/α)

κ
+

c3
η(η + µ)

− c3
η(η + µ)

≥ 1−R +
c3

η(η + µ)
− c3

η(η + µ)

= 1−R +
c3

(1− λRα)η((1− λRα)η + µ)
− c3

η(η + µ)

= 1−R + c3
(η + µ)− (1− λRα)((1− λRα)η + µ)

(1− λRα)η(η + µ)((1− λRα)η + µ)

= 1−R + c3
λRα((2− λRα)η + µ)

(1− λRα)η(η + µ)((1− λRα)η + µ)

≥ 1−R + c3
2λRα

η(η + µ)
= 1−R +

2c3λR

c2
= 1.

This implies the complexity bound by reverse induction, since immediately before the last
iteration, c2α ≥ ε(ε+ µ) and η > ε, hence Kµ(α, η) ≥ 1. ⊓⊔

5.3 Proposition. Suppose that f has Lipschitz continuous gradients with Lipschitz constant
L, and put

c4 = max
(η0 + µ

α2
0

,
e2κL

1− αmax

)
, c5 =

4c4
λ2

, c6 =

√
c4
µ
, c7 =

c6
λ
.

(i) In each iteration

η + µ ≤ α2c4, (36)

(ii) The algorithm stops after at most Kµ(α, η) further iterations. Here

K0(α, η) := 1 + κ−1 log
(
α

√
c4
ε

)
+

√
c5
ε
−
√

c5
η
, (37)

Kµ(α, η) := 1 +
log(c6α)

κ
+ c7 log

η

ε
for µ > 0. (38)

Proof. (i) (36) holds initially, and is preserved in each update unless α is reduced. But then

R < 1, hence by Theorem 4.2, (1− α)(η + µ) = α2L before the reduction. Therefore

η + µ ≤ η + µ ≤ α2L

1− α
≤ α2L

1− αmax

≤ α2e−2κc4 ≤ α2c4.

Thus (36) holds again after the reduction, and hence always. As in the previous proof, we
find that the algorithm stops eventually, and (35) holds.
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(ii) If µ = 0 then (18), (35), and (36) imply

K0(α, η)−K0(α, η) =
log(α/α)

κ
+

√
c5

(1− λRα)η
−
√

c5
η

≥ 1−R +
(
1−

√
1− λRα

)√ c5
(1− λRα)η

≥ 1−R +
λRα

2

√
c5
η

≥ 1−R +
λR

2

√
c5
c4

= 1.

This implies the complexity bound by reverse induction, since immediately before the last

iteration, α ≥
√

ε/c4, hence K0(α, η) ≥ 1.

(iii) If µ > 0 then (36) shows that always c6α ≥ 1, hence η = (1 − λRα)η ≤ (1 − R/c7)η.
Therefore

Kµ(α, η)−Kµ(α, η) =
log(α/α)

κ
+ c7 log

η

η
≥ 1−R + c7 log

1

1−R/c7
≥ 1,

and the result follows as before. ⊓⊔

Proof of Theorem 5.1.
(i) We apply Proposition 5.2(ii) to the first iteration, and note that K0(α, η) = O(e−2) and

Kµ(α, η) = O(e−1) if µ > 0.

(i) We apply Proposition 5.3(ii) to the first iteration, and note that K0(α, η) = O(e−1/2) and

Kµ(α, η) = O(log ε−1) if µ > 0.
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