Slides of Lectures

by Arnold Neumaier


It is God's privilege to conceal things, but the kings' pride is to research them.
(Proverbs 25:2)


A= Analysis, C = Combinatorics, F = Foundations,
L = Linear Algebra, N = Numerical Analysis, O = Optimization,
P = Physics/Chemistry, S = Statistics

In some cases, there are associated publications, see Recent Papers and Preprints


LS.
A. Neumaier, Estimation of accuracy in large-scale linear least squares solutions, Slides of a lecture given on September 13, 2019 at the MAT TRIAD 2019, Liblice, Czech Republic
pdf file

C.
A. Neumaier and S. Penjic, t-point counts in distance-regular graphs, Slides of a lecture presented at the 9th Slovenian International Conference on Graph Theory (Bled, Slovenia), 2019
pdf file
Many well-known inequalities for the intersection array can be derived in a uniform way using t-point counts, normalized counts of the number of ordered subsets isomorphic to a template with t vertices and certain specified distances between them.
In this talk it is shown that by considering t-point counts with t up to 6, the diameter bounds by Ivanov and Ivanov may be derived.
LS.
A. Neumaier and E. Groeneveld, meBLUP = ssBLUP without relationship matrices, Slides of a lecture given on September 20, 2018
pdf file
meBLUP is a new method for the genetic evaluation of joint pedigree and genomic data, totally avoiding relationship matrices or their inverse, which figure prominently in all previous approaches.
When either the pedigree information or the genomic information is absent, meBLUP reduces to equations that give exactly the same BLUPs and BLUEs as the standard formulation.
First numerical results indicate that meBLUP is likely to be competitive with ssBLUP, the current technique for the joint evaluation of pedigree and genomic data.
LP.
A. Neumaier, Invitation to Coherent Spaces, Slides of a lecture presented at the Conference on Quantum Harmonic Analysis and Symplectic Geometry (Strobl, Austria), 2018
pdf file

F.
A. Neumaier, From Informal to Formal Mathematics, Slides of a lecture presented at VINO 2017 (Technical University Vienna, Austria)
pdf file

N.
A. Neumaier, Concise - a synthesis of types, grammars, semantics, Lecture, Isaac Newton Institute for Mathematical Sciences, Cambridge 2017.
video of the lecture

N.
A. Neumaier, The communication of mathematics, Lecture, Isaac Newton Institute for Mathematical Sciences, Cambridge 2017.
video of the lecture

F.
A. Neumaier, Artificial Intelligence, Mathematics, and Consciousness, Slides, 2016.
pdf file

P.
A. Neumaier, Classical models for quantum light, Slides of a lecture given on April 7, 2016 at the Zentrum für Oberflächen- und Nanoanalytik of the University of Linz.
pdf file (350K)
In this lecture, a timeline is traced from Huygens' wave optics to the modern concept of light according to quantum electrodynamics. The lecture highlights the closeness of classical concepts and quantum concepts to a surprising extent. For example, it is shown that the modern quantum concept of a qubit was already known in 1852 in fully classical terms.
P.
A. Neumaier, Classical models for quantum light II, Slides of a lecture given on April 8, 2016 at the Zentrum für Oberflächen- und Nanoanalytik of the University of Linz.
pdf file (425K)
In this lecture the results of the historical review given in my lecture ''Classical models for quantum light'' are utilized to reassess the meaning of observables and stochastic processes for the classical and quantum description of light.
In particular we discuss the description of partially coherent, fluctuating light through classical stochastic Maxwell equations (with uncertainty in the initial conditions only), and look at a generalization that works for all quantum aspects of arbitrary quantum systems.
N.
A. Neumaier, Rigorously covering all solutions of infinite-dimensional equations, Lecture, 2014.
video of the lecture at BIRS

O.
A. Neumaier, VXQR: Derivative-free unconstrained optimization based on QR factorizations, Slides, 2010.
pdf file (105K)
figures (1429K)

O.
A. Neumaier, AD-like techniques in global optimization, Slides, 2008
pdf file (2283K)

F.
A. Neumaier, FMathL - Formal Mathematical Language, Slides, 2009
pdf file (98K)
Slides for a lecture at the AUTOMATHEŘ 2009 workshop, giving an overview of our work in the FMathL project for creating a modeling and documentation language for mathematics, suited to the habits of mathematicians


NO.
A. Neumaier, Towards optimization-based error bounds for uncertain PDEs, Slides, 2008
pdf file (347K)
Using tools from functional analysis and global optimization, methods are presented for obtaining, given an approximate solution of a partial differential equation, realistic error bounds for some response functional of the solution.

The method is based on computable bounds for the inverse of linear elliptic operators. Like in the dual weighted residual (DWR) method, our error bounds for response functionals have the quadratic approximation property (so that they are asymptotically optimal), but in contrast to DWR, our bounds are rigorous and also capture the higher order contributions to the error.

Using global optimization techniques, bounds can be found that not only cover the errors in solving the differential equations but also the errors caused by the uncertainty in the parameters. This provides reliable tools for the assessment of uncertainty in the solution of elliptic partial differential equations. Our bounds are independent of the way the approximations are obtained, hence can be used to independently verify the quality of an approximation computed by an arbitrary solver. The bounds not only account for discretization errors but also for other numerical errors introduced through numerical integration and boundary aproximations.

We also discuss how to represent model uncertainty in terms of so-called clouds, which describe the rough shapes of typical samples of various size, without fixing the details of the distribution. Clouds use only information from 1- and 2-dimensional marginal distributions, readily available in practice.


P.
A. Neumaier, Optical models for quantum mechanics, Slides of a lecture given on February 16, 2010 at the Institute for Theoretical Physics, University of Giessen.
pdf file (156K)
This lecture (the second of three) discusses work towards a new, classical view of quantum mechanics. It is based on an analysis of polarized light, of the meaning of quantum ensembles in a field theory, of classical simulations of quantum computing algorithms, and resulting optical models for the simulation of quantum mechanics.
In particular, it is shown that classical second-order stochastic optics is precisely the quantum mechanics of a single photon, with all its phenomenological bells and whistles.
P.
A. Neumaier, Classical and quantum field aspects of light, Slides of a lecture given on January 29, 2009 at the Institute of Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Vienna.
pdf file (374K)
This lecture discusses foundational problems on the nature of light revealed by 1. attempts to define a probability concept for photons, 2. quantum models for photons on demands (and their realization through laser-induced emission by a calcium ion in a cavity), 3. models explaining the photo effect, and 4. Bell-type experiments for single photon nonlocality.
O.
A. Neumaier, Global Optimization and Constraint Satisfaction, Slides, 2006.
pdf file (173K)

O.
A. Neumaier, Constrained global optimization, Slides, 2005.
pdf file (225K)

O.
A. Neumaier, Worst case analysis of mechanical structures by interval methods, Slides, 2005.
pdf file (263K)

OS.
A. Neumaier, Uncertainty modeling for robust verifiable design, Slides, 2004.
pdf file (318K)

O.
A. Neumaier and J.-P. Merlet, Constraint satisfaction and global optimization in robotics, Slides, 2002.
pdf file (449K)
























Global Optimization
Protein Folding
Interval Methods
Regularization
Mathematical Software
Computational Mathematics Links
Mathematics Links
Statistics Links
my home page (http://arnold-neumaier.at)

Arnold Neumaier (Arnold.Neumaier@univie.ac.at)